{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:30:44Z","timestamp":1732037444688},"reference-count":127,"publisher":"MDPI AG","issue":"4","license":[{"start":{"date-parts":[[2018,3,23]],"date-time":"2018-03-23T00:00:00Z","timestamp":1521763200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["J. Imaging"],"abstract":"Crop growth models simulate the relationship between plants and the environment to predict the expected yield for applications such as crop management and agronomic decision making, as well as to study the potential impacts of climate change on food security. A major limitation of crop growth models is the lack of spatial information on the actual conditions of each field or region. Remote sensing can provide the missing spatial information required by crop models for improved yield prediction. This paper reviews the most recent information about remote sensing data and their contribution to crop growth models. It reviews the main types, applications, limitations and advantages of remote sensing data and crop models. It examines the main methods by which remote sensing data and crop growth models can be combined. As the spatial resolution of most remote sensing data varies from sub-meter to 1 km, the issue of selecting the appropriate scale is examined in conjunction with their temporal resolution. The expected future trends are discussed, considering the new and planned remote sensing platforms, emergent applications of crop models and their expected improvement to incorporate automatically the increasingly available remotely sensed products.<\/jats:p>","DOI":"10.3390\/jimaging4040052","type":"journal-article","created":{"date-parts":[[2018,3,23]],"date-time":"2018-03-23T14:31:22Z","timestamp":1521815482000},"page":"52","source":"Crossref","is-referenced-by-count":172,"title":["Contribution of Remote Sensing on Crop Models: A Review"],"prefix":"10.3390","volume":"4","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9485-3631","authenticated-orcid":false,"given":"Dimitrios","family":"Kasampalis","sequence":"first","affiliation":[{"name":"Department of Hydraulics, Soil Science and Agricultural Engineering, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1893-6301","authenticated-orcid":false,"given":"Thomas","family":"Alexandridis","sequence":"additional","affiliation":[{"name":"Department of Hydraulics, Soil Science and Agricultural Engineering, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece"}]},{"given":"Chetan","family":"Deva","sequence":"additional","affiliation":[{"name":"Institute for Climate and Atmospheric Science, School of Earth and Environment, The University of Leeds, Leeds LS2 9JT, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8551-6617","authenticated-orcid":false,"given":"Andrew","family":"Challinor","sequence":"additional","affiliation":[{"name":"Institute for Climate and Atmospheric Science, School of Earth and Environment, The University of Leeds, Leeds LS2 9JT, UK"}]},{"given":"Dimitrios","family":"Moshou","sequence":"additional","affiliation":[{"name":"Department of Hydraulics, Soil Science and Agricultural Engineering, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece"}]},{"given":"Georgios","family":"Zalidis","sequence":"additional","affiliation":[{"name":"Department of Hydraulics, Soil Science and Agricultural Engineering, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece"}]}],"member":"1968","published-online":{"date-parts":[[2018,3,23]]},"reference":[{"key":"ref_1","unstructured":"Murthy, V.R.K. (2003, January 7\u201311). Crop Growth Modeling and Its Applications in Agricultural Meteorology. Proceedings of the Satellite Remote Sensing and GIS Applications in Agricultural Meteorology, Dehra Dun, India."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/S1161-0301(02)00095-3","article-title":"Modelling cropping systems\u2014Highlights of the symposium and preface to the special issues","volume":"18","author":"Donatelli","year":"2003","journal-title":"Eur. J. Agron."},{"key":"ref_3","unstructured":"Soria-Ruiz, J., Fernandes-Ordonez, Y., Quijano-Carranza, A., Mac\u00edas-Cervantes, J., Sauceda, P., Gonzalez, D., and Quintana, J. (2012, January 27\u201330). Remote Sensing and Simulation Model for Crop Management. Proceedings of the PIERS Proceedings, Kuala Lumpur, Malaysia."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/S1161-0301(02)00101-6","article-title":"Examples of strategies to analyze spatial and temporal yield variability using crop models","volume":"18","author":"Batchelor","year":"2002","journal-title":"Eur. J. Agron."},{"key":"ref_5","first-page":"001","article-title":"Crop modeling: A tool for agricultural research\u2013A review","volume":"2","author":"Yeboah","year":"2012","journal-title":"E3 J. Agric. Res. Dev."},{"key":"ref_6","unstructured":"De Wit, C.T. (1965). Photosynthesis of Leaf Canopies, PUDOC."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"647","DOI":"10.14358\/PERS.69.6.647","article-title":"Remote sensing for crop management","volume":"69","author":"Pinter","year":"2003","journal-title":"Photogramm. Eng. Remote Sen."},{"key":"ref_8","unstructured":"Erickson, J.D. (1984). The lacie experiment in satellite aided monitoring of global crop production. The Role of Terrestrial Vegetation in the Global Carbon Cycle: Measurement by Remote Sensing, John Wiley & Sons."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1016\/S1161-0301(02)00107-7","article-title":"The dssat cropping system model","volume":"18","author":"Jones","year":"2003","journal-title":"Eur. J. Agron."},{"key":"ref_10","unstructured":"Roubtsova, E. (2014). Modelling and Simulation of Diffusive Processes Methods and Applications, Springer."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/S0168-1699(02)00106-0","article-title":"Mapping vineyard leaf area with multispectral satellite imagery","volume":"38","author":"Johnson","year":"2003","journal-title":"Comput. Electron. Agric."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"2775","DOI":"10.1093\/jxb\/erp062","article-title":"Crops and climate change: Progress, trends, and challenges in simulating impacts and informing adaptation","volume":"60","author":"Challinor","year":"2009","journal-title":"J. Exp. Bot."},{"key":"ref_13","first-page":"8","article-title":"A review of crop growth simulation models as tools for agricultural meteorology","volume":"6","author":"Rauff","year":"2015","journal-title":"Agric. Sci."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"1443","DOI":"10.1016\/j.agrformet.2010.07.008","article-title":"On the use of statistical models to predict crop yield responses to climate change","volume":"150","author":"Lobell","year":"2010","journal-title":"Agric. For. Meteorol."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"709","DOI":"10.1002\/jsfa.7359","article-title":"An overview of available crop growth and yield models for studies and assessments in agriculture","volume":"96","author":"Valentini","year":"2016","journal-title":"J. Sci. Food Agric."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1016\/j.agsy.2016.05.014","article-title":"Brief history of agricultural systems modeling","volume":"155","author":"Jones","year":"2017","journal-title":"Agric. Syst."},{"key":"ref_17","unstructured":"Wallach, D., Makowski, D., Jones, J.W., Brun, F., and Jones, J.W. (2014). Working with Dynamic Crop Models, Academic Press."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1016\/j.agsy.2016.09.021","article-title":"Toward a new generation of agricultural system data, models, and knowledge products: State of agricultural systems science","volume":"155","author":"Jones","year":"2017","journal-title":"Agric. Syst."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"6","DOI":"10.1016\/j.agee.2011.05.016","article-title":"Scale changes and model linking methods for integrated assessment of agri-environmental systems","volume":"142","author":"Ewert","year":"2011","journal-title":"Agric. Ecosyst. Environ."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"3451","DOI":"10.1093\/jxb\/erv014","article-title":"Identifying traits for genotypic adaptation using crop models","volume":"66","author":"Watson","year":"2015","journal-title":"J. Exp. Bot."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"246","DOI":"10.1016\/j.agrformet.2017.02.025","article-title":"From oryza2000 to oryza (v3): An improved simulation model for rice in drought and nitrogen-deficient environments","volume":"237\u2013238","author":"Li","year":"2017","journal-title":"Agric. For. Meteorol."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.agrformet.2004.01.002","article-title":"Design and optimisation of a large-area process-based model for annual crops","volume":"124","author":"Challinor","year":"2004","journal-title":"Agric. For. Meteorol."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/0308-521X(94)00055-V","article-title":"Apsim: A novel software system for model development, model testing and simulation in agricultural systems research","volume":"50","author":"McCown","year":"1996","journal-title":"Agric. Syst."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"426","DOI":"10.2134\/agronj2008.0139s","article-title":"Aquacrop\u2014The fao crop model to simulate yield response to water","volume":"101","author":"Steduto","year":"2009","journal-title":"Agron. J."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/S1161-0301(02)00109-0","article-title":"Cropsyst, a cropping systems simulation model","volume":"18","author":"Donatelli","year":"2003","journal-title":"Eur. J. Agron."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.eja.2011.05.001","article-title":"Simulation of winter wheat yield and its variability in different climates of europe: A comparison of eight crop growth models","volume":"35","author":"Palosuo","year":"2011","journal-title":"Eur. J. Agron."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1016\/j.fcr.2004.02.005","article-title":"Simulation of above-ground suppression of competing species and competition tolerance in winter wheat varieties","volume":"89","author":"Olesen","year":"2004","journal-title":"Field Crops Res."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1016\/j.agsy.2004.09.011","article-title":"Description and evaluation of the rice growth model oryza2000 under nitrogen-limited conditions","volume":"87","author":"Bouman","year":"2006","journal-title":"Agric. Syst."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"687","DOI":"10.1051\/agro:2002038","article-title":"Using spot data for calibrating a wheat growth model under mediterranean conditions","volume":"22","author":"Clevers","year":"2002","journal-title":"Agronomie"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1051\/agro:19980501","article-title":"Stics: A generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn","volume":"18","author":"Brisson","year":"1998","journal-title":"Agronomie"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"2565","DOI":"10.1080\/01431169208904064","article-title":"Linking physical remote sensing models with crop growth simulation models, applied for sugar beet","volume":"13","author":"Bouman","year":"1992","journal-title":"Int. J. Remote Sens."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"4060","DOI":"10.1109\/JSTARS.2015.2403135","article-title":"Jointly assimilating MODIS LAI and et products into the SWAP model for winter wheat yield estimation","volume":"8","author":"Huang","year":"2015","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1111\/j.1475-2743.1989.tb00755.x","article-title":"Wofost: A simulation model of crop production","volume":"5","author":"Wolf","year":"1989","journal-title":"Soil Use Manag."},{"key":"ref_34","unstructured":"Werner, A., D\u00f6lling, S., Jarfe, A., K\u00fchn, J., Pauly, J., and Roth, R. (2000). Deriving Maps of Yield-Potentials with Crop Models, Site Information and Remote Sensing, American Society of Agronomy."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"827","DOI":"10.1038\/nclimate1916","article-title":"Uncertainty in simulating wheat yields under climate change","volume":"3","author":"Asseng","year":"2013","journal-title":"Nat. Clim. Chang."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"9","DOI":"10.4141\/cjps96-003","article-title":"Crop growth models for decision support systems","volume":"76","author":"Jame","year":"1996","journal-title":"Can. J. Plant Sci."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"426","DOI":"10.1016\/j.tplants.2004.07.007","article-title":"Role of crop physiology in predicting gene-to-phenotype relationships","volume":"9","author":"Yin","year":"2004","journal-title":"Trends Plant Sci."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"6179","DOI":"10.1093\/jxb\/eru223","article-title":"Can current crop models be used in the phenotyping era for predicting the genetic variability of yield of plants subjected to drought or high temperature?","volume":"65","author":"Parent","year":"2014","journal-title":"J. Exp. Bot."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"855","DOI":"10.1093\/jxb\/erq329","article-title":"Yield-trait performance landscapes: From theory to application in breeding maize for drought tolerance","volume":"62","author":"Messina","year":"2011","journal-title":"J. Exp. Bot."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1016\/j.agrformet.2006.10.006","article-title":"Impacts of future climate change on california perennial crop yields: Model projections with climate and crop uncertainties","volume":"141","author":"Lobell","year":"2006","journal-title":"Agric. For. Meteorol."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1007\/s10584-014-1264-3","article-title":"Comparing the effects of calibration and climate errors on a statistical crop model and a process-based crop model","volume":"132","author":"Watson","year":"2015","journal-title":"Clim. Chang"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"2085","DOI":"10.1098\/rstb.2005.1740","article-title":"Quantification of physical and biological uncertainty in the simulation of the yield of a tropical crop using present-day and doubled CO2 climates","volume":"360","author":"Challinor","year":"2005","journal-title":"Philos. Trans. R. Soc. B Biol. Sci."},{"key":"ref_43","unstructured":"Khan, M.R. (2011). Crops from Space: Improved Earth Observation Capacity to Map Crop Areas and to Quantify Production, University of Twente."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.agwat.2012.03.009","article-title":"Performance of the fao aquacrop model for wheat grain yield and soil moisture simulation in western Canada","volume":"110","author":"Mkhabela","year":"2012","journal-title":"Agric. Water Manag."},{"key":"ref_45","first-page":"277","article-title":"Climate and the efficiency of crop production in britain [and discussion]","volume":"281","author":"Monteith","year":"1977","journal-title":"Philos. Trans. R. Soc. Lond. Series B Biol. Sci."},{"key":"ref_46","unstructured":"Nix, H.A. (1983). Minimum Data Sets for Agrotechnology Transfer. Proceedings of the International Symposium on Minimum Data Sets for Agrotechnology Transfer, ICRISAT Center, Patancheru, India, 21\u201326 March 1983, ICRISAT Center."},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Tsuji, G.Y., Hoogenboom, G., and Thornton, P.K. (1998). Data for model operation, calibration, and evaluation. Understanding Options for Agricultural Production, Springer.","DOI":"10.1007\/978-94-017-3624-4"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.compag.2013.04.003","article-title":"Integrated description of agricultural field experiments and production: The ICASA version 2.0 data standards","volume":"96","author":"White","year":"2013","journal-title":"Comput. Electron. Agric."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/S0167-8809(03)00152-X","article-title":"Agroecology, scaling and interdisciplinarity","volume":"100","author":"Dalgaard","year":"2003","journal-title":"Agric. Ecosyst. Environ."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"704","DOI":"10.2134\/agronj1996.00021962008800050005x","article-title":"Potential uses and limitations of crop models","volume":"88","author":"Boote","year":"1996","journal-title":"Agron. J."},{"key":"ref_51","doi-asserted-by":"crossref","unstructured":"Ahuja, L.R., and Ma, L. (2002). Parameterization of agricultural system models: Current approaches and future needs. Agricultural System Models in Field Research and Technology Transfer, Lewis Publishers.","DOI":"10.1201\/9781420032413.ch14"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1007\/s13593-014-0225-6","article-title":"New multi-model approach gives good estimations of wheat yield under semi-arid climate in Morocco","volume":"35","author":"Bregaglio","year":"2015","journal-title":"Agron. Sustain. Dev."},{"key":"ref_53","doi-asserted-by":"crossref","unstructured":"Basu, S.K., and Kumar, N. (2014). Modelling and Simulation of Diffusive Processes: Methods and Applications, Springer International Publishing.","DOI":"10.1007\/978-3-319-05657-9"},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/0031-8663(76)90013-2","article-title":"Progress in remote sensing (1972\u20131976)","volume":"32","author":"Fischer","year":"1976","journal-title":"Photogrammetria"},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Campbell, J.B. (1987). Introduction to Remote Sensing, The Guilford Press.","DOI":"10.1080\/10106048709354126"},{"key":"ref_56","unstructured":"Campbell, J.B., and Wynne, R.H. (2011). Introduction to Remote Sensing, Guilford Press. [5th ed.]."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"336","DOI":"10.2134\/agronj1979.00021962007100020027x","article-title":"Leaf area index estimates for wheat from landsat and their implications for evapotranspiration and crop modeling","volume":"71","author":"Wiegand","year":"1979","journal-title":"Agron. J."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1080\/02757259509532298","article-title":"A review of vegetation indices","volume":"13","author":"Bannari","year":"1995","journal-title":"Remote Sens. Rev."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1080\/10106040608542399","article-title":"Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years","volume":"21","author":"Silleos","year":"2006","journal-title":"Geocarto Int."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/0034-4257(91)90009-U","article-title":"Potentials and limits of vegetation indices for LAI and APAR assessment","volume":"35","author":"Baret","year":"1991","journal-title":"Remote Sens. Environ."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1016\/S0034-4257(00)00197-8","article-title":"Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density","volume":"76","author":"Broge","year":"2001","journal-title":"Remote Sens. Environ."},{"key":"ref_62","unstructured":"Baret, F., Bacour, C., B\u00e9al, D., Weiss, M., Berthelot, B., and Regner, P. (2006). Algorithm Theoretical Basis Document for MERIS Top of Canopy Land Products (toc_veg), INRA & Noveltis."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/0034-4257(94)90042-6","article-title":"A framework for monitoring crop growth by combining directional and spectral remote sensing information","volume":"50","author":"Clevers","year":"1994","journal-title":"Remote Sens. Environ."},{"key":"ref_64","unstructured":"Dadhwal, V. (2003, January 7\u201313). Crop Growth and Productivity Monitoring and Simulation Using Remote Sensing and Gis. Proceedings of the Remote Sensing and GIS Applications in Agricultural Meteorology, Dehra Dun, India."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"20078","DOI":"10.3390\/s141120078","article-title":"A review of imaging techniques for plant phenotyping","volume":"14","author":"Li","year":"2014","journal-title":"Sensors"},{"key":"ref_66","first-page":"165","article-title":"A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling","volume":"9","author":"Dorigo","year":"2007","journal-title":"Int. J. Appl. Earth Observ. Geoinf."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"4606","DOI":"10.1080\/01431161.2015.1084439","article-title":"Improving remotely sensed actual evapotranspiration estimation with raster meteorological data","volume":"36","author":"Cherif","year":"2015","journal-title":"Int. J. Remote Sens."},{"key":"ref_68","doi-asserted-by":"crossref","unstructured":"Alexandridis, T.K., Cherif, I., Bilas, G., Almeida, W.G., Hartanto, I.M., van Andel, S.J., and Araujo, A. (2016). Spatial and temporal distribution of soil moisture at the catchment scale using remotely-sensed energy fluxes. Water, 8.","DOI":"10.3390\/w8010032"},{"key":"ref_69","doi-asserted-by":"crossref","unstructured":"Nearing, G.S., Crow, W.T., Thorp, K.R., Moran, M.S., Reichle, R.H., and Gupta, H.V. (2012). Assimilating remote sensing observations of leaf area index and soil moisture for wheat yield estimates: An observing system simulation experiment. Water Resour. Res., 48.","DOI":"10.1029\/2011WR011420"},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1016\/j.agee.2005.06.005","article-title":"Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications","volume":"111","author":"Launay","year":"2005","journal-title":"Agric. Ecosyst. Environ."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"041896","DOI":"10.1117\/1.3491191","article-title":"Use of remote sensing data to assist crop modeling","volume":"4","author":"Oppelt","year":"2010","journal-title":"J. Appl. Remote Sens."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1016\/j.rse.2013.08.002","article-title":"Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the hyspiri mission","volume":"139","author":"Mariotto","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"614","DOI":"10.1104\/pp.16.01447","article-title":"High-throughput phenotyping of maize leaf physiological and biochemical traits using hyperspectral reflectance","volume":"173","author":"Yendrek","year":"2017","journal-title":"Plant Physiol."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.fcr.2017.12.004","article-title":"Evaluating canopy spectral reflectance vegetation indices to estimate nitrogen use traits in hard winter wheat","volume":"217","author":"Frels","year":"2018","journal-title":"Field Crops Res."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"625","DOI":"10.1016\/j.compag.2016.07.028","article-title":"Temporal dynamics of maize plant growth, water use, and leaf water content using automated high throughput rgb and hyperspectral imaging","volume":"127","author":"Ge","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"12400","DOI":"10.3390\/rs70912400","article-title":"Assimilation of two variables derived from hyperspectral data into the dssat-ceres model for grain yield and quality estimation","volume":"7","author":"Li","year":"2015","journal-title":"Remote Sens."},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.eja.2017.11.002","article-title":"A review of data assimilation of remote sensing and crop models","volume":"92","author":"Jin","year":"2018","journal-title":"Eur. J. Agron."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.ast.2015.12.033","article-title":"Aerodynamic design of a male UAV","volume":"50","author":"Panagiotou","year":"2016","journal-title":"Aerosp. Sci. Technol."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1108\/17488840610663693","article-title":"Male UAV desian of an increased reliability level","volume":"78","author":"Frydrychewicz","year":"2006","journal-title":"Aircr. Eng. Aerosp. Technol."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1016\/j.biosystemseng.2014.11.007","article-title":"Monitoring of crop biomass using true colour aerial photographs taken from a remote controlled hexacopter","volume":"129","author":"Jannoura","year":"2015","journal-title":"Biosyst. Eng."},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.eja.2015.11.026","article-title":"Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots?","volume":"74","author":"Rasmussen","year":"2016","journal-title":"Eur. J. Agron."},{"key":"ref_82","doi-asserted-by":"crossref","unstructured":"Adao, T., Hruska, J., Padua, L., Bessa, J., Peres, E., Morais, R., and Sousa, J.J. (2017). Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens., 9.","DOI":"10.3390\/rs9111110"},{"key":"ref_83","doi-asserted-by":"crossref","unstructured":"Yao, X., Wang, N., Liu, Y., Cheng, T., Tian, Y., Chen, Q., and Zhu, Y. (2017). Estimation of wheat LAI at middle to high levels using unmanned aerial vehicle narrowband multispectral imagery. Remote Sens., 9.","DOI":"10.3390\/rs9121304"},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.biosystemseng.2015.01.008","article-title":"Multi-temporal imaging using an unmanned aerial vehicle for monitoring a sunflower crop","volume":"132","author":"Vega","year":"2015","journal-title":"Biosyst. Eng."},{"key":"ref_85","unstructured":"Silleos, N., Strati, S., Cherif, I., Topaloglou, C., Alexandridis, T.K., Iordanidis, C., Stavridou, D., Monachou, S., Kalogeropoulos, C., and Bilas, G. (2014, January 8\u201310). Weekly time series of LAI maps at river basin scale using MODIS satellite data. Proceedings of the 1st International GEOMAPPLICA Conference, Skiathos Island, Greece."},{"key":"ref_86","doi-asserted-by":"crossref","unstructured":"Yan, K., Park, T., Yan, G., Liu, Z., Yang, B., Chen, C., Nemani, R.R., Knyazikhin, Y., and Myneni, B.R. (2016). Evaluation of MODIS LAI\/fpar product collection 6. Part 2: Validation and intercomparison. Remote Sens., 8.","DOI":"10.3390\/rs8060460"},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"310","DOI":"10.1016\/j.rse.2013.02.030","article-title":"Geov1: LAI, fapar essential climate variables and fcover global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products","volume":"137","author":"Camacho","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_88","first-page":"73","article-title":"Relationship between MODIS-ndvi data and wheat yield: A case study in northern buenos aires province, Argentina","volume":"2","author":"Lopresti","year":"2015","journal-title":"Inf. Process. Agric."},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"266","DOI":"10.1016\/j.eja.2006.10.007","article-title":"A simple model of regional wheat yield based on NDVI data","volume":"26","author":"Moriondo","year":"2007","journal-title":"Eur. J. Agron."},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.agrformet.2013.01.007","article-title":"Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics","volume":"173","author":"Bolton","year":"2013","journal-title":"Agric. For. Meteorol."},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"4169","DOI":"10.1080\/01431160110107653","article-title":"Wheat yield estimates using multi-temporal NDVI satellite imagery","volume":"23","author":"Labus","year":"2002","journal-title":"Int. J. Remote Sens."},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1016\/j.rse.2013.10.027","article-title":"An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the united states","volume":"141","author":"Johnson","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"1689","DOI":"10.1080\/01431169608948732","article-title":"Yield estimation for corn and wheat in the hungarian great plain using Landsat mss data","volume":"17","author":"Hamar","year":"1996","journal-title":"Int. J. Remote Sens."},{"key":"ref_94","first-page":"26","article-title":"Crop yield estimation model for iowa using remote sensing and surface parameters","volume":"8","author":"Prasad","year":"2006","journal-title":"Int. J. Appl. Earth Observ. Geoinf."},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"410","DOI":"10.17221\/412\/2015-PSE","article-title":"Winter oilseed rape and winter wheat growth prediction using remote sensing methods","volume":"61","author":"Dominguez","year":"2015","journal-title":"Plant Soil Environ."},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"2540","DOI":"10.1109\/JSTARS.2016.2541169","article-title":"Assimilation of LAI and dry biomass data from optical and SAR images into an agro-meteorological model to estimate soybean yield","volume":"9","author":"Julie","year":"2016","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.isprsjprs.2017.02.001","article-title":"Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the aquacrop model using the particle swarm optimization algorithm","volume":"126","author":"Jin","year":"2017","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_98","doi-asserted-by":"crossref","first-page":"737","DOI":"10.1080\/01431160500296867","article-title":"Predicting winter wheat condition, grain yield and protein content using multi-temporal envisat-asar and Landsat TM satellite images","volume":"27","author":"Liu","year":"2006","journal-title":"Int. J. Remote Sens."},{"key":"ref_99","doi-asserted-by":"crossref","first-page":"2","DOI":"10.2480\/agrmet.D-14-00023","article-title":"Estimation of rice yield by simriw-rs, a model that integrates remote sensing data into a crop growth model","volume":"73","author":"Maki","year":"2017","journal-title":"J. Agric. Meteorol."},{"key":"ref_100","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/0924-2716(92)90030-D","article-title":"Remote sensing and crop production models: Present trends","volume":"47","author":"Maas","year":"1992","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/0304-3800(88)90031-2","article-title":"Use of remotely-sensed information in agricultural crop growth models","volume":"41","author":"Maas","year":"1988","journal-title":"Ecol. Model."},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"4422","DOI":"10.1109\/JSTARS.2014.2316012","article-title":"Application of crop model data assimilation with a particle filter for estimating regional winter wheat yields","volume":"7","author":"Jiang","year":"2014","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"key":"ref_103","first-page":"9","article-title":"Water productivity at different geographical scales in zhanghe irrigation district, China","volume":"2","author":"Chemin","year":"2006","journal-title":"Int. J. Geoinf."},{"key":"ref_104","doi-asserted-by":"crossref","first-page":"3589","DOI":"10.1080\/01431160701564618","article-title":"An estimation of the optimum temporal resolution for monitoring vegetation condition on a nationwide scale using MODIS\/terra data","volume":"29","author":"Alexandridis","year":"2008","journal-title":"Int. J. Remote Sens."},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"507","DOI":"10.1080\/13658810902798107","article-title":"Investigation of aggregation effects in vegetation condition monitoring at a national scale","volume":"24","author":"Alexandridis","year":"2010","journal-title":"Int. J. Geogr. Inf. Sci."},{"key":"ref_106","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1007\/s41207-016-0007-4","article-title":"Advances in remote sensing applications for urban sustainability","volume":"1","author":"Kadhim","year":"2016","journal-title":"Euro-Mediterr. J. Environ. Integr."},{"key":"ref_107","doi-asserted-by":"crossref","first-page":"251","DOI":"10.13031\/2013.29490","article-title":"Assimilating leaf area index estimates from remote sensing into the simulations of a cropping systems model","volume":"53","author":"Thorp","year":"2010","journal-title":"Trans. ASABE"},{"key":"ref_108","doi-asserted-by":"crossref","first-page":"2081","DOI":"10.13031\/2013.17793","article-title":"Integrating remotely sensed images with a soybean model to improve spatial yield simulation","volume":"47","author":"Seidl","year":"2004","journal-title":"Trans. ASAE"},{"key":"ref_109","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.rse.2017.04.014","article-title":"Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries","volume":"202","author":"Azzari","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_110","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/S0308-521X(00)00063-9","article-title":"Spatial validation of crop models for precision agriculture","volume":"68","author":"Basso","year":"2001","journal-title":"Agric. Syst."},{"key":"ref_111","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1007\/s11119-017-9498-5","article-title":"Integrating remote sensing information with crop model to monitor wheat growth and yield based on simulation zone partitioning","volume":"19","author":"Guo","year":"2018","journal-title":"Precis. Agric."},{"key":"ref_112","doi-asserted-by":"crossref","unstructured":"Jin, X., Kumar, L., Li, Z., Xu, X., Yang, G., and Wang, J. (2016). Estimation of winter wheat biomass and yield by combining the aquacrop model and field hyperspectral data. Remote Sens., 8.","DOI":"10.3390\/rs8120972"},{"key":"ref_113","doi-asserted-by":"crossref","first-page":"1704","DOI":"10.3390\/rs5041704","article-title":"Using low resolution satellite imagery for yield prediction and yield anomaly detection","volume":"5","author":"Rembold","year":"2013","journal-title":"Remote Sens."},{"key":"ref_114","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/0034-4257(95)00227-8","article-title":"Combined use of optical and microwave remote sensing data for crop growth monitoring","volume":"56","author":"Clevers","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"ref_115","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1071\/CP14007","article-title":"Predicting the future of plant breeding: Complementing empirical evaluation with genetic prediction","volume":"65","author":"Cooper","year":"2014","journal-title":"Crop Pasture Sci."},{"key":"ref_116","doi-asserted-by":"crossref","unstructured":"Frankenberg, C., Berry, J., Guanter, L., and Joiner, J. (2013). Remote sensing of terrestrial chlorophyll fluorescence from space. SPIE Newsroom, 2\u20135.","DOI":"10.1117\/2.1201302.004725"},{"key":"ref_117","doi-asserted-by":"crossref","unstructured":"Young, A. (2015). Reducing the Cost to Low-Earth Orbit for Small Satellites bt\u2014The Twenty-First Century Commercial Space Imperative, Springer International Publishing.","DOI":"10.1007\/978-3-319-18929-1_5"},{"key":"ref_118","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1038\/nclimate2117","article-title":"Making the most of climate impacts ensembles","volume":"4","author":"Challinor","year":"2014","journal-title":"Nat. Clim. Chang."},{"key":"ref_119","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1016\/j.envsoft.2014.12.003","article-title":"Crop modelling for integrated assessment of risk to food production from climate change","volume":"72","author":"Ewert","year":"2015","journal-title":"Environ. Model. Softw."},{"key":"ref_120","doi-asserted-by":"crossref","first-page":"261","DOI":"10.5194\/gmd-8-261-2015","article-title":"The global gridded crop model intercomparison: Data and modeling protocols for phase 1 (v1.0)","volume":"8","author":"Elliott","year":"2015","journal-title":"Geosci. Model Dev."},{"key":"ref_121","doi-asserted-by":"crossref","first-page":"296","DOI":"10.1016\/j.agsy.2017.07.010","article-title":"Improving the use of crop models for risk assessment and climate change adaptation","volume":"159","author":"Challinor","year":"2017","journal-title":"Agric. Syst."},{"key":"ref_122","unstructured":"Porter, J.R., Liyong, X., Challinor, A., Cochrane, K., Howden, M., Iqbal, M.M., Lobell, D., and Travasso, M.I. (2014). Chapter 7: Food security and food production systems. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Chan, Cambridge University Press."},{"key":"ref_123","doi-asserted-by":"crossref","first-page":"3859","DOI":"10.1111\/gcb.13340","article-title":"Reducing emissions from agriculture to meet the 2 \u00b0C target","volume":"22","author":"Wollenberg","year":"2016","journal-title":"Glob. Chang. Biol."},{"key":"ref_124","doi-asserted-by":"crossref","first-page":"924","DOI":"10.1038\/nclimate2353","article-title":"Importance of food-demand management for climate mitigation","volume":"4","author":"Richards","year":"2014","journal-title":"Nat. Clim. Chang."},{"key":"ref_125","doi-asserted-by":"crossref","first-page":"1679","DOI":"10.1111\/gcb.12808","article-title":"Crop yield response to climate change varies with cropping intensity","volume":"21","author":"Challinor","year":"2015","journal-title":"Glob. Chang. Biol."},{"key":"ref_126","first-page":"79","article-title":"Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley","volume":"39","author":"Bendig","year":"2015","journal-title":"Int. J. Appl. Earth Observ. Geoinf."},{"key":"ref_127","doi-asserted-by":"crossref","first-page":"246","DOI":"10.1016\/j.isprsjprs.2017.05.003","article-title":"Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery","volume":"130","author":"Zhou","year":"2017","journal-title":"ISPRS J. Photogram. Remote Sens."}],"container-title":["Journal of Imaging"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2313-433X\/4\/4\/52\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,10]],"date-time":"2024-06-10T06:48:52Z","timestamp":1718002132000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2313-433X\/4\/4\/52"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,3,23]]},"references-count":127,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2018,4]]}},"alternative-id":["jimaging4040052"],"URL":"https:\/\/doi.org\/10.3390\/jimaging4040052","relation":{},"ISSN":["2313-433X"],"issn-type":[{"value":"2313-433X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,3,23]]}}}