{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T11:10:12Z","timestamp":1732101012870,"version":"3.28.0"},"reference-count":61,"publisher":"MDPI AG","issue":"9","license":[{"start":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T00:00:00Z","timestamp":1726790400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"NSF","award":["OAC-1827243","HRD-1411260"]},{"name":"US Department of Education","award":["P120A180114"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["J. Imaging"],"abstract":"Face recognition is a widely used computer vision, which plays an increasingly important role in user authentication systems, security systems, and consumer electronics. The models for most current applications are based on high-definition digital cameras. In this paper, we focus on digital images derived from historical motion picture films. Historical motion picture films often have poorer resolution than modern digital imagery, making face detection a more challenging task. To approach this problem, we first propose a trunk\u2013branch concatenated multi-task cascaded convolutional neural network (TB-MTCNN), which efficiently extracts facial features from blurry historical films by combining the trunk with branch networks and employing various sizes of kernels to enrich the multi-scale receptive field. Next, we build a deep neural network-integrated object-tracking algorithm to compensate for failed recognition over one or more video frames. The framework combines simple online and real-time tracking with deep data association (Deep SORT), and TB-MTCNN with the residual neural network (ResNet) model. Finally, a state-of-the-art image restoration method is employed to reduce the effect of noise and blurriness. The experimental results show that our proposed joint face recognition and tracking network can significantly reduce missed recognition in historical motion picture film frames.<\/jats:p>","DOI":"10.3390\/jimaging10090236","type":"journal-article","created":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T08:45:28Z","timestamp":1727081128000},"page":"236","source":"Crossref","is-referenced-by-count":0,"title":["Historical Blurry Video-Based Face Recognition"],"prefix":"10.3390","volume":"10","author":[{"ORCID":"http:\/\/orcid.org\/0009-0003-6187-027X","authenticated-orcid":false,"given":"Lujun","family":"Zhai","sequence":"first","affiliation":[{"name":"Electrical and Computer Engineering Department, Prairie View A&M University, Prairie View, TX 77446, USA"}]},{"given":"Suxia","family":"Cui","sequence":"additional","affiliation":[{"name":"Electrical and Computer Engineering Department, Prairie View A&M University, Prairie View, TX 77446, USA"}]},{"given":"Yonghui","family":"Wang","sequence":"additional","affiliation":[{"name":"Computer Science Department, Prairie View A&M University, Prairie View, TX 77446, USA"}]},{"given":"Song","family":"Wang","sequence":"additional","affiliation":[{"name":"Computer Science and Engineering Department, University of South Carolina, Columbia, SC 29425, USA"}]},{"given":"Jun","family":"Zhou","sequence":"additional","affiliation":[{"name":"Computer Science and Engineering Department, University of South Carolina, Columbia, SC 29425, USA"}]},{"given":"Greg","family":"Wilsbacher","sequence":"additional","affiliation":[{"name":"Moving Image Research Collections, University Libraries, University of South Carolina, Columbia, SC 29425, USA"}]}],"member":"1968","published-online":{"date-parts":[[2024,9,20]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"1913","DOI":"10.1126\/science.1127488","article-title":"The Influence of a Sense of Time on Human Development","volume":"312","author":"Carstensen","year":"2006","journal-title":"Science"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"531","DOI":"10.2307\/2150762","article-title":"Who Talked to the President When? A Study of Lyndon B. Johnson","volume":"103","author":"Best","year":"1988","journal-title":"Political Sci. Q."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.neucom.2018.03.030","article-title":"Face detection using deep learning: An improved faster RCNN approach","volume":"299","author":"Sun","year":"2018","journal-title":"Neurocomputing"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1002","DOI":"10.1109\/TPAMI.2017.2700390","article-title":"Trunk-Branch Ensemble Convolutional Neural Networks for Video-Based Face Recognition","volume":"40","author":"Ding","year":"2018","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_5","unstructured":"Hadid, A., and Pietikainen, M. (2004, January 19). From still image to video-based face recognition: An experimental analysis. Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition, Seoul, Republic of Korea."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Li, Z., Tie, Y., and Qi, L. (2019, January 9\u201310). Face Recognition in Real-world Internet Videos Based on Deep Learning. Proceedings of the 2019 8th International Symposium on Next Generation Electronics (ISNE), Zhengzhou, China.","DOI":"10.1109\/ISNE.2019.8896630"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"5967","DOI":"10.1109\/TIP.2015.2493448","article-title":"A Benchmark and Comparative Study of Video-Based Face Recognition on COX Face Database","volume":"24","author":"Huang","year":"2015","journal-title":"IEEE Trans. Image Process."},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Ong, E.P., Loke, M.H., Lin, W., Lu, Z., and Yao, S. (2007, January 15\u201320). Video Quality Metrics\u2014An Analysis for Low Bit Rate Videos. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing\u2014ICASSP \u201907, Honolulu, HI, USA.","DOI":"10.1109\/ICASSP.2007.366051"},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Li, M., Jianbin, S., and Hui, L. (2017, January 17\u201319). A Determining Method of Frame Rate and Resolution to Boost the Video Live QoE. Proceedings of the 2nd International Conference on Multimedia and Image Processing (ICMIP), Wuhan, China.","DOI":"10.1109\/ICMIP.2017.26"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"e391","DOI":"10.7717\/peerj-cs.391","article-title":"Efficient video face recognition based on frame selection and quality assessment","volume":"7","author":"Kharchevnikova","year":"2021","journal-title":"PeerJ Comput. Sci."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1049\/bme2.12006","article-title":"Hybrid face recognition under adverse conditions using appearance-based and dynamic features of smile expression","volume":"10","author":"Taskiran","year":"2021","journal-title":"IET Biom."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1504\/IJCVR.2021.111881","article-title":"Incremental approach for multi-modal face expression recognition system using deep neural networks","volume":"11","author":"Handa","year":"2021","journal-title":"Int. J. Comput. Vis. Robot."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016, January 27\u201330). You Only Look Once: Unified, Real-Time Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA.","DOI":"10.1109\/CVPR.2016.91"},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Xu, Y., Yan, W., Sun, H., Yang, G., and Luo, J. (2019). CenterFace: Joint Face Detection and Alignment Using Face as Point. arXiv.","DOI":"10.1155\/2020\/7845384"},{"key":"ref_15","unstructured":"He, Y., Xu, D., Wu, L., Jian, M., Xiang, S., and Pan, C. (2019). LFFD: A Light and Fast Face Detector for Edge Devices. arXiv."},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., and Li, S.Z. (2017). S3FD: Single Shot Scale-invariant Face Detector. arXiv.","DOI":"10.1109\/ICCV.2017.30"},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Yang, S., Luo, P., Loy, C.C., and Tang, X. (2015). WIDER FACE: A Face Detection Benchmark. arXiv.","DOI":"10.1109\/CVPR.2016.596"},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Yang, S., Luo, P., Loy, C.C., and Tang, X. (2015, January 7\u201313). From facial parts responses to face detection: A deep learning approach. Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile.","DOI":"10.1109\/ICCV.2015.419"},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Zhu, C., Zheng, Y., Luu, K., and Savvides, M. (2016). CMS-RCNN: Contextual Multi-Scale Region-based CNN for Unconstrained Face Detection. arXiv.","DOI":"10.1007\/978-3-319-61657-5_3"},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Li, J., Wang, Y., Wang, C., Tai, Y., Qian, J., Yang, J., Wang, C., Li, J., and Huang, F. (2019, January 15\u201320). DSFD: Dual Shot Face Detector. Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA.","DOI":"10.1109\/CVPR.2019.00520"},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Albiero, V., Chen, X., Yin, X., Pang, G., and Hassner, T. (2021). img2pose: Face Alignment and Detection via 6DoF, Face Pose Estimation. arXiv.","DOI":"10.1109\/CVPR46437.2021.00753"},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Chou, K., Cheng, Y., Chen, W., and Chen, Y. (2019, January 13\u201316). Multi-task Cascaded and Densely Connected Convolutional Networks Applied to Human Face Detection and Facial Expression Recognition System. Proceedings of the 2019 International Automatic Control Conference (CACS), Keelung, Taiwan.","DOI":"10.1109\/CACS47674.2019.9024357"},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Wojke, N., Bewley, A., and Paulus, D. (2017). Simple Online and Realtime Tracking with a Deep Association Metric. arXiv.","DOI":"10.1109\/ICIP.2017.8296962"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for Image Recognition. arXiv.","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Wan, Z., Zhang, B., Chen, D., Zhang, P., Chen, D., Liao, J., and Wen, F. (2020). Bringing Old Photos Back to Life. arXiv.","DOI":"10.1109\/CVPR42600.2020.00282"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"e2002545117","DOI":"10.1073\/pnas.2002545117","article-title":"Deep learning and computer vision will transform entomology","volume":"118","author":"Bjerge","year":"2021","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"541","DOI":"10.1162\/neco.1989.1.4.541","article-title":"Backpropagation applied to handwritten zip code recognition","volume":"1","author":"LeCun","year":"1989","journal-title":"Neural Comput."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"26","DOI":"10.31695\/IJERAT.2018.3458","article-title":"Smart Computing","volume":"5","author":"Sadiku","year":"2019","journal-title":"Int. J. Eng. Res. Adv. Technol."},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Nandal, P., Bura, D., and Singh, M. (2021). Emerging Trends of Big Data in Cloud Computing. Applications of Big Data in Large-and Small-Scale Systems, IGI Global.","DOI":"10.4018\/978-1-7998-6673-2.ch003"},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Park, J.J., Loia, V., Pan, Y., and Sung, Y. (2021). A Study on Dropout Techniques to Reduce Overfitting in Deep Neural Networks. Advanced Multimedia and Ubiquitous Engineering: MUE-FutureTech, Springer.","DOI":"10.1007\/978-981-15-9309-3"},{"key":"ref_31","unstructured":"Chen, T., Zhang, Z., Liu, S., Chang, S., and Wang, Z. (2021, January 4). Robust overfitting may be mitigated by properly learned smoothening. Proceedings of the International Conference on Learning Representations, Vienna, Austria."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"32734","DOI":"10.1109\/ACCESS.2021.3060785","article-title":"Sample Contribution Pattern Based Big Data Mining Optimization Algorithms","volume":"9","author":"Shi","year":"2021","journal-title":"IEEE Access"},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014, January 23\u201328). Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA.","DOI":"10.1109\/CVPR.2014.81"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"1137","DOI":"10.1109\/TPAMI.2016.2577031","article-title":"Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks","volume":"39","author":"Ren","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Hu, P., and Ramanan, D. (2017, January 21\u201326). Finding Tiny Faces. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA.","DOI":"10.1109\/CVPR.2017.166"},{"key":"ref_36","unstructured":"Yoo, Y., Han, D., and Yun, S. (2019). EXTD: Extremely Tiny Face Detector via Iterative Filter Reuse. arXiv."},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Li, H., Lin, Z., Shen, X., Brandt, J., and Hua, G. (2015, January 7\u201312). A convolutional neural network cascade for face detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA.","DOI":"10.1109\/CVPR.2015.7299170"},{"key":"ref_38","unstructured":"Zhang, F., Fan, X., Ai, G., Song, J., Qin, Y., and Wu, J. (2019). Accurate Face Detection for High Performance. arXiv."},{"key":"ref_39","unstructured":"Zhang, C., Xu, X., and Tu, D. (2018). Face Detection Using Improved Faster RCNN. arXiv."},{"key":"ref_40","unstructured":"Wang, Y., Ji, X., Zhou, Z., Wang, H., and Li, Z. (2017). Detecting Faces Using Region-based Fully Convolutional Networks. arXiv."},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014, January 23\u201328). DeepFace: Closing the Gap to Human-Level Performance in Face Verification. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA.","DOI":"10.1109\/CVPR.2014.220"},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Schroff, F., Kalenichenko, D., and Philbin, J. (2015, January 7\u201312). FaceNet: A unified embedding for face recognition and clustering. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA.","DOI":"10.1109\/CVPR.2015.7298682"},{"key":"ref_43","unstructured":"Yi, D., Lei, Z., Liao, S., and Li, S.Z. (2014). Learning Face Representation from Scratch. arXiv."},{"key":"ref_44","first-page":"1097","article-title":"ImageNet classification with deep convolutional neural networks","volume":"25","author":"Krizhevsky","year":"2012","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"ref_45","unstructured":"Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv."},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2014). Going Deeper with Convolutions. arXiv.","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Kim, C., Li, F., Ciptadi, A., and Rehg, J.M. (2015, January 7\u201313). Multiple Hypothesis Tracking Revisited. Proceedings of the IEEE International Conference on Computer Vision (ICCV), Santiago, Chile.","DOI":"10.1109\/ICCV.2015.533"},{"key":"ref_48","doi-asserted-by":"crossref","unstructured":"Rezatofighi, S.H., Milan, A., Zhang, Z., Shi, Q., Dick, A., and Reid, I. (2015, January 7\u201313). Joint Probabilistic Data Association Revisited. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), hlSantiago, Chile.","DOI":"10.1109\/ICCV.2015.349"},{"key":"ref_49","doi-asserted-by":"crossref","unstructured":"Kim, C., Fuxin, L., Alotaibi, M., and Rehg, J.M. (2021). Discriminative Appearance Modeling with Multi-track Pooling for Real-time Multi-object Tracking. arXiv.","DOI":"10.1109\/CVPR46437.2021.00943"},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B. (2016, January 25\u201328). Simple online and realtime tracking. Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA.","DOI":"10.1109\/ICIP.2016.7533003"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1109\/TIP.2005.860311","article-title":"Digital image processing techniques for the detection and removal of cracks in digitized paintings","volume":"15","author":"Giakoumis","year":"2006","journal-title":"IEEE Trans. Image Process."},{"key":"ref_52","unstructured":"Chang, R.C., Sie, Y.L., Chou, S.M., and Shih, T. (2005, January 14). Photo Defect Detection for Image Inpainting. Proceedings of the 7th IEEE International Symposium on Multimedia (ISM\u201905), Irvine, CA, USA."},{"key":"ref_53","doi-asserted-by":"crossref","unstructured":"Whyte, O., Sivic, J., Zisserman, A., and Ponce, J. (2010, January 13\u201318). Non-uniform deblurring for shaken images. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA.","DOI":"10.1109\/CVPR.2010.5540175"},{"key":"ref_54","doi-asserted-by":"crossref","unstructured":"Noroozi, M., Chandramouli, P., and Favaro, P. (2017). Motion Deblurring in the Wild. arXiv.","DOI":"10.1007\/978-3-319-66709-6_6"},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Fan, S., and Luo, Y. (2021). Deblurring Processor for Motion-Blurred Faces Based on Generative Adversarial Networks. arXiv.","DOI":"10.1145\/3458380.3458427"},{"key":"ref_56","doi-asserted-by":"crossref","unstructured":"Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., and Matas, J. (2018). DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. arXiv.","DOI":"10.1109\/CVPR.2018.00854"},{"key":"ref_57","unstructured":"Lenka, M.K., Pandey, A., and Mittal, A. (2019). Blind Deblurring Using GANs. arXiv."},{"key":"ref_58","doi-asserted-by":"crossref","unstructured":"Ghosh, S.S., Hua, Y., Mukherjee, S.S., and Robertson, N.M. (2020, January 25\u201328). Improving Detection And Recognition Of Degraded Faces By Discriminative Feature Restoration Using GAN. Proceedings of the IEEE International Conference on Image Processing (ICIP), Abu Dhabi, UAE.","DOI":"10.1109\/ICIP40778.2020.9191246"},{"key":"ref_59","doi-asserted-by":"crossref","unstructured":"Wojke, N., and Bewley, A. (2018, January 12\u201315). Deep Cosine Metric Learning for Person Re-Identification. Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Tahoe, NV, USA.","DOI":"10.1109\/WACV.2018.00087"},{"key":"ref_60","doi-asserted-by":"crossref","unstructured":"Koonce, B. (2021). ResNet 50. Convolutional Neural Networks with Swift for Tensorflow, Springer.","DOI":"10.1007\/978-1-4842-6168-2_4"},{"key":"ref_61","unstructured":"Huang, G.B., Ramesh, M., Berg, T., and Learned-Miller, E. (2007). Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments, University of Massachusetts. Technical Report 07-49."}],"container-title":["Journal of Imaging"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2313-433X\/10\/9\/236\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T10:51:52Z","timestamp":1732099912000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2313-433X\/10\/9\/236"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,9,20]]},"references-count":61,"journal-issue":{"issue":"9","published-online":{"date-parts":[[2024,9]]}},"alternative-id":["jimaging10090236"],"URL":"https:\/\/doi.org\/10.3390\/jimaging10090236","relation":{},"ISSN":["2313-433X"],"issn-type":[{"type":"electronic","value":"2313-433X"}],"subject":[],"published":{"date-parts":[[2024,9,20]]}}}