{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T17:45:21Z","timestamp":1740159921784,"version":"3.37.3"},"reference-count":47,"publisher":"MDPI AG","issue":"12","license":[{"start":{"date-parts":[[2023,12,12]],"date-time":"2023-12-12T00:00:00Z","timestamp":1702339200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Information"],"abstract":"To identify objects in images, a complex set of skills is needed that includes understanding the context and being able to determine the borders of objects. In computer vision, this task is known as semantic segmentation and it involves categorizing each pixel in an image. It is crucial in many real-world situations: for autonomous vehicles, it enables the identification of objects in the surrounding area; in medical diagnosis, it enhances the ability to detect dangerous pathologies early, thereby reducing the risk of serious consequences. In this study, we compare the performance of various ensembles of convolutional and transformer neural networks. Ensembles can be created, e.g., by varying the loss function, the data augmentation method, or the learning rate strategy. Our proposed ensemble, which uses a simple averaging rule, demonstrates exceptional performance across multiple datasets. Notably, compared to prior state-of-the-art methods, our ensemble consistently shows improvements in the well-studied polyp segmentation problem. This problem involves the precise delineation and identification of polyps within medical images, and our approach showcases noteworthy advancements in this domain, obtaining an average Dice of 0.887, which outperforms the current SOTA with an average Dice of 0.885.<\/jats:p>","DOI":"10.3390\/info14120657","type":"journal-article","created":{"date-parts":[[2023,12,12]],"date-time":"2023-12-12T10:23:22Z","timestamp":1702376602000},"page":"657","source":"Crossref","is-referenced-by-count":1,"title":["Exploring the Potential of Ensembles of Deep Learning Networks for Image Segmentation"],"prefix":"10.3390","volume":"14","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-3502-7209","authenticated-orcid":false,"given":"Loris","family":"Nanni","sequence":"first","affiliation":[{"name":"Department of Information Engineering, University of Padova, 35122 Padova, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0290-7354","authenticated-orcid":false,"given":"Alessandra","family":"Lumini","sequence":"additional","affiliation":[{"name":"Department of Computer Science and Engineering, University of Bologna, 40126 Cesena, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3210-4632","authenticated-orcid":false,"given":"Carlo","family":"Fantozzi","sequence":"additional","affiliation":[{"name":"Department of Information Engineering, University of Padova, 35122 Padova, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2023,12,12]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"302","DOI":"10.1016\/j.neucom.2019.11.118","article-title":"A brief survey on semantic segmentation with deep learning","volume":"406","author":"Hao","year":"2020","journal-title":"Neurocomputing"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"215299","DOI":"10.1109\/ACCESS.2020.3040862","article-title":"Attention guided encoder-decoder network with multi-scale context aggregation for land cover segmentation","volume":"8","author":"Wang","year":"2020","journal-title":"IEEE Access"},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Long, J., Shelhamer, E., and Darrell, T. (2015, January 7\u201312). Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA.","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"82031","DOI":"10.1109\/ACCESS.2021.3086020","article-title":"U-Net and its variants for medical image segmentation: A review of theory and applications","volume":"9","author":"Siddique","year":"2021","journal-title":"IEEE Access"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs","volume":"40","author":"Chen","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","article-title":"SegNet: A deep convolutional encoder-decoder architecture for image segmentation","volume":"39","author":"Badrinarayanan","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_7","unstructured":"Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., and Gelly, S. (2021). An Image is Worth 16 \u00d7 16 Words: Transformers for Image Recognition at Scale. arXiv."},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Wang, W., Xie, E., Li, X., Fan, D.P., Song, K., Liang, D., Lu, T., Luo, P., and Shao, L. (2021, January 11\u201317). Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. Proceedings of the IEEE\/CVF International Conference on Computer Vision, Montreal, BC, Canada.","DOI":"10.1109\/ICCV48922.2021.00061"},{"key":"ref_9","first-page":"757","article-title":"A comprehensive review on ensemble deep learning: Opportunities and challenges","volume":"35","author":"Mohammed","year":"2023","journal-title":"J. King Saud Univ. Comput. Inf. Sci."},{"key":"ref_10","unstructured":"Huang, C.H., Wu, H.Y., and Lin, Y.L. (2021). HarDNet-MSEG: A Simple Encoder-Decoder Polyp Segmentation Neural Network that Achieves over 0.9 Mean Dice and 86 FPS. arXiv."},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Dong, B., Wang, W., Fan, D.P., Li, J., Fu, H., and Shao, L. (2023). Polyp-PVT: Polyp Segmentation with Pyramid Vision Transformers. arXiv.","DOI":"10.26599\/AIR.2023.9150015"},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Zhang, W., Fu, C., Zheng, Y., Zhang, F., Zhao, Y., and Sham, C.W. (2022). HSNet: A hybrid semantic network for polyp segmentation. Comput. Biol. Med., 150.","DOI":"10.1016\/j.compbiomed.2022.106173"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"341","DOI":"10.3390\/signals3020022","article-title":"An Empirical Study on Ensemble of Segmentation Approaches","volume":"3","author":"Nanni","year":"2022","journal-title":"Signals"},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Nanni, L., Loreggia, A., Lumini, A., and Dorizza, A. (2023). A Standardized Approach for Skin Detection: Analysis of the Literature and Case Studies. J. Imaging, 9.","DOI":"10.3390\/jimaging9020035"},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Nanni, L., Fantozzi, C., Loreggia, A., and Lumini, A. (2023). Ensembles of Convolutional Neural Networks and Transformers for Polyp Segmentation. Sensors, 23.","DOI":"10.20944\/preprints202303.0221.v1"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10462-009-9124-7","article-title":"Ensemble-based classifiers","volume":"33","author":"Rokach","year":"2010","journal-title":"Artif. Intell. Rev."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1109\/MCAS.2006.1688199","article-title":"Ensemble Based Systems in Decision Making","volume":"6","author":"Polikar","year":"2006","journal-title":"IEEE Circuits Syst. Mag."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/s11704-019-8208-z","article-title":"A survey on ensemble learning","volume":"14","author":"Dong","year":"2020","journal-title":"Front. Comput. Sci."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1007\/BF00116037","article-title":"The strength of weak learnability","volume":"5","author":"Schapire","year":"1990","journal-title":"Mach. Learn."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/BF00058655","article-title":"Bagging Predictors","volume":"24","author":"Breiman","year":"1996","journal-title":"Mach. Learn."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1134","DOI":"10.1145\/1968.1972","article-title":"A Theory of the Learnable","volume":"27","author":"Valiant","year":"1984","journal-title":"Commun. ACM"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1145\/174644.174647","article-title":"Cryptographic Limitations on Learning Boolean Formulae and Finite Automata","volume":"41","author":"Kearns","year":"1994","journal-title":"J. ACM"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1214\/aos\/1176344552","article-title":"Bootstrap Methods: Another Look at the Jackknife","volume":"7","author":"Efron","year":"1979","journal-title":"Ann. Stat."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"1283","DOI":"10.1016\/S0167-8655(01)00073-3","article-title":"On combining classifiers using sum and product rules","volume":"22","author":"Alexandre","year":"2001","journal-title":"Pattern Recognit. Lett."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"105151","DOI":"10.1016\/j.engappai.2022.105151","article-title":"Ensemble deep learning: A review","volume":"115","author":"Ganaie","year":"2022","journal-title":"Eng. Appl. Artif. Intell."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018, January 8\u201314). Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. Proceedings of the Computer Vision\u2014ECCV 2018: 15th European Conference, Munich, Germany.","DOI":"10.1007\/978-3-030-01234-2_49"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"113677","DOI":"10.1016\/j.eswa.2020.113677","article-title":"Fair comparison of skin detection approaches on publicly available datasets","volume":"160","author":"Lumini","year":"2020","journal-title":"Expert Syst. Appl."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1109\/TPAMI.2005.17","article-title":"Skin segmentation using color pixel classification: Analysis and comparison","volume":"27","author":"Phung","year":"2005","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"1644","DOI":"10.1109\/JBHI.2016.2623421","article-title":"Segmentation of White Blood Cells Image Using Adaptive Location and Iteration","volume":"21","author":"Liu","year":"2017","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"101553","DOI":"10.1016\/j.ecoinf.2022.101553","article-title":"Graph ranking based butterfly segmentation in ecological images","volume":"68","author":"Filali","year":"2022","journal-title":"Ecol. Inform."},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Zhao, P., Li, C., Rahaman, M.M., Xu, H., Ma, P., Yang, H., Sun, H., Jiang, T., Xu, N., and Grzegorzek, M. (2022). EMDS-6: Environmental Microorganism Image Dataset Sixth Version for Image Denoising, Segmentation, Feature Extraction, Classification, and Detection Method Evaluation. Front. Microbiol., 13.","DOI":"10.3389\/fmicb.2022.829027"},{"key":"ref_32","unstructured":"Nguyen, H.C., Le, T.T., Pham, H.H., and Nguyen, H.Q. (2021). VinDr-RibCXR: A Benchmark Dataset for Automatic Segmentation and Labeling of Individual Ribs on Chest X-Rays. arXiv."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"107061","DOI":"10.1016\/j.compag.2022.107061","article-title":"Camouflaged locust segmentation based on PraNet","volume":"198","author":"Liu","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"ref_34","unstructured":"Park, H., Sj\u00f6sund, L.L., Yoo, Y., and Kwak, N. (2019). ExtremeC3Net: Extreme Lightweight Portrait Segmentation Networks using Advanced C3-modules. arXiv."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"43290","DOI":"10.1109\/ACCESS.2021.3064443","article-title":"MirrorNet: Bio-Inspired Camouflaged Object Segmentation","volume":"9","author":"Yan","year":"2021","journal-title":"IEEE Access"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"108824","DOI":"10.1016\/j.knosys.2022.108824","article-title":"MIA-Net: Multi-information aggregation network combining transformers and convolutional feature learning for polyp segmentation","volume":"247","author":"Li","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"ref_37","first-page":"12760","article-title":"P2T: Pyramid Pooling Transformer for Scene Understanding","volume":"11","author":"Wu","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Liu, F., Hua, Z., Li, J., and Fan, L. (2022). DBMF: Dual Branch Multiscale Feature Fusion Network for polyp segmentation. Comput. Biol. Med., 151.","DOI":"10.1016\/j.compbiomed.2022.106304"},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Zheng, S., Lu, J., Zhao, H., Zhu, X., Luo, Z., Wang, Y., Fu, Y., Feng, J., Xiang, T., and Torr, P.H. (2021, January 20\u201325). Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers. Proceedings of the 2021 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA.","DOI":"10.1109\/CVPR46437.2021.00681"},{"key":"ref_40","unstructured":"Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., Lu, L., Yuille, A.L., and Zhou, Y. (2021). TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation. arXiv."},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., and Essert, C. TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation. Proceedings of the Medical Image Computing and Computer Assisted Intervention\u2014MICCAI 2021.","DOI":"10.1007\/978-3-030-87240-3"},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Kim, T., Lee, H., and Kim, D. (2021, January 20\u201324). UACANet: Uncertainty Augmented Context Attention for Polyp Segmentation. Proceedings of the 29th ACM International Conference on Multimedia, MM\u201921, Virtual Event.","DOI":"10.1145\/3474085.3475375"},{"key":"ref_43","unstructured":"Wei, J., Hu, Y., Zhang, R., Li, Z., Zhou, S.K., and Cui, S. (October, January 27). Shallow Attention Network for Polyp Segmentation. Proceedings of the Lecture Notes in Computer Science, Strasbourg, France. Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics."},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Zhao, X., Zhang, L., and Lu, H. (2021). Automatic Polyp Segmentation via Multi-scale Subtraction Network. arXiv.","DOI":"10.1007\/978-3-030-87193-2_12"},{"key":"ref_45","first-page":"616","article-title":"SwinE-Net: Hybrid deep learning approach to novel polyp segmentation using convolutional neural network and Swin Transformer","volume":"9","author":"Park","year":"2022","journal-title":"J. Comput. Des. Eng."},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Song, P., Li, J., and Fan, H. (2022). Attention based multi-scale parallel network for polyp segmentation. Comput. Biol. Med., 146.","DOI":"10.1016\/j.compbiomed.2022.105476"},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Xia, Y., Yun, H., Liu, Y., Luan, J., and Li, M. (2023). MGCBFormer: The multiscale grid-prior and class-inter boundary-aware transformer for polyp segmentation. Comput. Biol. Med., 167.","DOI":"10.1016\/j.compbiomed.2023.107600"}],"container-title":["Information"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2078-2489\/14\/12\/657\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,12]],"date-time":"2023-12-12T11:29:44Z","timestamp":1702380584000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2078-2489\/14\/12\/657"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,12,12]]},"references-count":47,"journal-issue":{"issue":"12","published-online":{"date-parts":[[2023,12]]}},"alternative-id":["info14120657"],"URL":"https:\/\/doi.org\/10.3390\/info14120657","relation":{},"ISSN":["2078-2489"],"issn-type":[{"type":"electronic","value":"2078-2489"}],"subject":[],"published":{"date-parts":[[2023,12,12]]}}}