{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:50:51Z","timestamp":1722473451956},"reference-count":75,"publisher":"MDPI AG","issue":"12","license":[{"start":{"date-parts":[[2017,12,6]],"date-time":"2017-12-06T00:00:00Z","timestamp":1512518400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IJGI"],"abstract":"An Exploratory Data Analysis (EDA) aims to use Synthetic Aperture Radar (SAR) measurements for discriminating between two oil slick types observed on the sea surface: naturally-occurring oil seeps versus human-related oil spills\u2014the use of satellite sensors for this task is poorly documented in scientific literature. A long-term RADARSAT dataset (2008\u20132012) is exploited to investigate oil slicks in Campeche Bay (Gulf of Mexico). Simple Classification Algorithms to distinguish the oil slick type are designed based on standard multivariate data analysis techniques. Various attributes of geometry, shape, and dimension that describe the oil slick Size Information are combined with SAR-derived backscatter coefficients\u2014sigma-(\u03c3o), beta-(\u03b2o), and gamma-(\u03b3o) naught. The combination of several of these characteristics is capable of distinguishing the oil slick type with ~70% of overall accuracy, however, the sole and simple use of two specific oil slick\u2019s Size Information (i.e., area and perimeter) is equally capable of distinguishing seeps from spills. The data mining exercise of our EDA promotes a novel idea bridging petroleum pollution and remote sensing research, thus paving the way to further investigate the satellite synoptic view to express geophysical differences between seeped and spilled oil observed on the sea surface for systematic use.<\/jats:p>","DOI":"10.3390\/ijgi6120379","type":"journal-article","created":{"date-parts":[[2017,12,6]],"date-time":"2017-12-06T16:29:36Z","timestamp":1512577776000},"page":"379","source":"Crossref","is-referenced-by-count":14,"title":["Exploratory Data Analysis of Synthetic Aperture Radar (SAR) Measurements to Distinguish the Sea Surface Expressions of Naturally-Occurring Oil Seeps from Human-Related Oil Spills in Campeche Bay (Gulf of Mexico)"],"prefix":"10.3390","volume":"6","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5282-9812","authenticated-orcid":false,"given":"Gustavo","family":"Carvalho","sequence":"first","affiliation":[{"name":"Programa de Engenharia Civil (PEC), Laborat\u00f3rio de M\u00e9todos Computacionais em Engenharia (LAMCE), Laborat\u00f3rio de Sensoriamento Remoto por Radar Aplicado \u00e0 Ind\u00fastria do Petr\u00f3leo (LabSAR), Instituto Alberto Luiz Coimbra de P\u00f3s-Gradua\u00e7\u00e3o e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil"}]},{"given":"Peter","family":"Minnett","sequence":"additional","affiliation":[{"name":"Department of Ocean Sciences (OCE), Rosenstiel School of Marine and Atmospheric Science (RSMAS), University of Miami (UM), Miami, FL 33149, USA"}]},{"given":"Fernando","family":"De Miranda","sequence":"additional","affiliation":[{"name":"Programa de Engenharia Civil (PEC), Laborat\u00f3rio de M\u00e9todos Computacionais em Engenharia (LAMCE), Laborat\u00f3rio de Sensoriamento Remoto por Radar Aplicado \u00e0 Ind\u00fastria do Petr\u00f3leo (LabSAR), Instituto Alberto Luiz Coimbra de P\u00f3s-Gradua\u00e7\u00e3o e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil"}]},{"given":"Luiz","family":"Landau","sequence":"additional","affiliation":[{"name":"Programa de Engenharia Civil (PEC), Laborat\u00f3rio de M\u00e9todos Computacionais em Engenharia (LAMCE), Laborat\u00f3rio de Sensoriamento Remoto por Radar Aplicado \u00e0 Ind\u00fastria do Petr\u00f3leo (LabSAR), Instituto Alberto Luiz Coimbra de P\u00f3s-Gradua\u00e7\u00e3o e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ 21941-909, Brazil"}]},{"given":"Eduardo","family":"Paes","sequence":"additional","affiliation":[{"name":"Laborat\u00f3rio de Ecologia Marinha e Oceanografia Pesqueira da Amaz\u00f4nia (LEMOPA), Instituto Socioambiental e dos Recursos H\u00eddricos (ISARH), Universidade Federal Rural da Amaz\u00f4nia (UFRA), Bel\u00e9m, PA 66077-830, Brazil"}]}],"member":"1968","published-online":{"date-parts":[[2017,12,6]]},"reference":[{"key":"ref_1","unstructured":"Jackson, C.R., and Apel, J.R. (2017, November 13). Synthetic Aperture Radar Marine User\u2019s Manual, Available online: http:\/\/www.sarusersmanual.com."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"27","DOI":"10.2528\/PIERB07110101","article-title":"An introduction to synthetic aperture radar (SAR)","volume":"2","author":"Chan","year":"2008","journal-title":"Prog. Electromagn. Res. B"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"3151","DOI":"10.1029\/96GL03009","article-title":"Satellite detection of natural films on the ocean surface","volume":"23","author":"Espedal","year":"1996","journal-title":"Geophys. Res. Lett."},{"key":"ref_4","unstructured":"Johannessen, O.M., Espedal, H.A., Jenkins, A.J., and Knulst, J. (1995, January 6\u20138). SAR surveillance of ocean surface slicks. Proceedings of the Second ERS Application Workshop, London, UK."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"6642","DOI":"10.3390\/s8106642","article-title":"Oil spill detection by SAR Images: Dark formation detection, feature extraction and classification algorithms","volume":"8","author":"Topouzelis","year":"2008","journal-title":"Sensors"},{"key":"ref_6","unstructured":"Mchugh, S.L. (2009). Satellite Synthetic Aperture radar in the Prosecution of Illegal Oil Discharges. [Master\u2019s Thesis, Memorial University of Newfoundland]."},{"key":"ref_7","unstructured":"Mano, M.F., Beisl, C.H., Siqueira, C.Y.S., and Pereira, J.S. (2014, January 15\u201318). Evaluation of remote technologies applied to natural seep mapping and their impact in oil exploration. Proceedings of the Rio Oil & Gas Expo and Conference, Rio de Janeiro, Brazil."},{"key":"ref_8","unstructured":"Carvalho, G.A. (2015). Multivariate data Analysis of Satellite-Derived Measurements to Distinguish Natural from Man-Made Oil Slicks on the Sea Surface of Campeche Bay (Mexico). [Ph.D. Dissertation, Universidade Federal do Rio de Janeiro (UFRJ), COPPE]. Available online: http:\/\/www.coc.ufrj.br\/index.php?option=com_content&view=article&id=5354:gustavo-de-araujo-carvalho."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1080\/07038992.2016.1173532","article-title":"The use of a RADARSAT-derived long-term dataset to investigate the sea surface expressions of human-related oil spills and naturally-occurring oil seeps in Campeche Bay, Gulf of Mexico","volume":"42","author":"Carvalho","year":"2016","journal-title":"Can. J. Remote Sens."},{"key":"ref_10","unstructured":"Carvalho, G.A., Landau, L., Miranda, F.P., Minnett, P., Moreira, F., and Beisl, C. (2015, January 25\u201329). The use of RADARSAT-derived information to investigate oil slick occurrence in Campeche Bay, Gulf of Mexico. Proceedings of the XVII Brazilian Remote Sensing Symposium (SBSR), INPE, Jo\u00e3o Pessoa, Brazil. Available online: http:\/\/www.dsr.inpe.br\/sbsr2015\/files\/p0217.pdf."},{"key":"ref_11","unstructured":"Freeman, A. (1992, January 2\u201314). Radiometric calibration of SAR image data. Proceedings of the XVII Congress for Photogrammetry and Remote Sensing (ISPRS), Washington, DC, USA."},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"El-darymli, K., Mcguire, P., Gill, E., Power, D., and Moloney, C. (2014, January 4\u20137). Understanding the significance of radiometric calibration for synthetic aperture radar imagery. Proceedings of the IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), Toronto, ON, Canada.","DOI":"10.1109\/CCECE.2014.6901104"},{"key":"ref_13","unstructured":"(2016, August 01). ESA (European Space Agency). Available online: http:\/\/earth.eo.esa.int\/polsarpro\/."},{"key":"ref_14","unstructured":"Thakur, P.K. (2014, January 9\u201312). SAR data processing to extract backscatter response from various features. Proceedings of the Symposium Tutorials on Polarimetric SAR Data Processing and Applications, International Society for Photogrametry and Remote Sensing (ISPRS), Hyderabad, India."},{"key":"ref_15","unstructured":"ASF (Alaska Satellite Facility) (2017, November 13). MapReady User Manual Remote Sensing Tool Kit, Engineering Group. Available online: https:\/\/media.asf.alaska.edu\/uploads\/pdf\/mapready_manual_3.1.22.pdf."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1109\/TPAMI.1982.4767223","article-title":"A model for radar images and its application to adaptive digital filtering of multiplicative noise","volume":"4","author":"Frost","year":"1982","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_17","unstructured":"Fiscella, B., Giancaspro, A., Nirchio, F., Pavese, P., and Trivero, P. (2010, January 16\u201320). Oil spill monitoring in the Mediterranean Sea using ERS SAR data. Proceedings of the Envisat Symposium, ESA, G\u00f6teborg, Sweden."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1109\/JSTARS.2013.2251864","article-title":"Satellite Oil Spill Detection Using Artificial Neural Networks","volume":"6","author":"Singha","year":"2013","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_19","unstructured":"Calabresi, G., Del Frate, F., Lichtenegger, I., Petrocchi, A., and Trivero, P. (July, January 28). Neural networks for the oil spill detection using ERS\u2013SAR data. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS \u201999), Hamburg, Germany."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"1916","DOI":"10.1109\/36.774704","article-title":"Automatic detection of oil spills in ERS SAR images","volume":"37","author":"Solberg","year":"1999","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_21","unstructured":"Bentz, C.M. (2006). Reconhecimento Autom\u00e1tico de Eventos Ambientais Costeiros e Oce\u00e2nicos em Imagens de Radares Orbitais. [Ph.D. Dissertation, Universidade Federal do Rio de Janeiro (UFRJ), COPPE]."},{"key":"ref_22","unstructured":"Pisano, A. (2011). Development of Oil Spill Detection Techniques for Satellite Optical Sensors and Their Application to Monitor Oil Spill Discharge in the Mediterranean Sea. [Ph.D. Dissertation, Universit\u00e0 di Bologna]."},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"McgarigaL, K., and Marks, B.J. (2017, November 13). FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure. Available online: http:\/\/www.umass.edu\/landeco\/pubs\/mcgarigal.marks.1995.pdf.","DOI":"10.2737\/PNW-GTR-351"},{"key":"ref_24","unstructured":"Solberg, A.H.S., and Volden, E. (1997, January 3\u20138). Incorporation of prior knowledge in automatic classification of oil spills in ERS SAR images. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS \u201997), Singapore."},{"key":"ref_25","unstructured":"Miranda, F.P. (1990). Reconnaissance Geologic Mapping of a Heavily-Forested Shield Area (Guiana Shield, Northwestern Brazil). [Ph.D. Dissertation, University of Nevada]."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"3561","DOI":"10.1080\/014311600750037589","article-title":"Oil spill detection using marine SAR images","volume":"21","author":"Fiscella","year":"2000","journal-title":"Int. J. Remote Sens."},{"key":"ref_27","unstructured":"Sneath, P.H.A., and SokaL, R.R. (2017). Numerical Taxonomy\u2014The principles and Practice of Numerical Classification, W.H. Freeman and Company."},{"key":"ref_28","unstructured":"Lane, D.M., Scott, D., Hebl, M., Guerra, R., Osherson, D., and Ziemer, H. (2017, November 13). Introduction to Statistics. Available online: http:\/\/onlinestatbook.com\/Online_Statistics_Education.pdf."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"467","DOI":"10.1590\/S0100-40421998000400016","article-title":"Uma introdu\u00e7\u00e3o \u00e0 an\u00e1lise explorat\u00f3ria de dados multivariados","volume":"21","author":"Moita","year":"1998","journal-title":"Qu\u00edm. Nova"},{"key":"ref_30","unstructured":"Legendre, P., and Legendre, L. (2012). Developments in Environmental Modelling. Numerical Ecology, Elsevier Science B.V.. [Third ed.]."},{"key":"ref_31","unstructured":"Valentin, J.L. (2012). Ecologia Num\u00e9rica\u2013Uma Introdu\u00e7\u00e3o \u00e0 An\u00e1lise Multivariada de Dados Ecol\u00f3gicos, Editora Interci\u00eancia. [Second ed.]."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1007\/BF01897163","article-title":"A study of standardization of variables in cluster analysis","volume":"5","author":"Milligan","year":"1988","journal-title":"J. Classif."},{"key":"ref_33","first-page":"9","article-title":"PAST: PAleontological STatistics software package for education and data analysis","volume":"4","author":"Hammer","year":"2001","journal-title":"Palaeontol. Electron."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"1063","DOI":"10.1093\/protein\/9.11.1063","article-title":"An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies","volume":"9","author":"Kelley","year":"1996","journal-title":"Protein Eng. Des. Sel."},{"key":"ref_35","first-page":"279","article-title":"On the cophenetic correlation coefficient","volume":"18","author":"Farris","year":"1969","journal-title":"Syst. Biol."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1186\/1029-242X-2013-203","article-title":"Comparison of hierarchical cluster analysis methods by cophenetic correlation","volume":"2013","author":"Dogan","year":"2013","journal-title":"J. Inequal. Appl."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"33","DOI":"10.2307\/1217208","article-title":"The Comparison of dendrograms by objective methods","volume":"11","author":"Sokal","year":"1962","journal-title":"Taxon"},{"key":"ref_38","unstructured":"NCSS (Number Cruncher Statistical System) (2017, November 13). Hierarchical Clustering and Dendrograms. NCSS Statistical Software. Available online: http:\/\/ncss.wpengine.netdna-cdn.com\/wp-content\/themes\/ncss\/pdf\/Procedures\/NCSS\/Hierarchical_Clustering-Dendrograms.pdf."},{"key":"ref_39","unstructured":"Hall, M.A., and Smith, L.A. (1997, January 24\u201328). Feature subset selection: a correlation based filter approach. Proceedings of the Fourth International Conference on Neural Information and Intelligent Information Systems, Dunedin, New Zealand."},{"key":"ref_40","unstructured":"Hall, M.A., and Smith, L.A. (1999, January 1\u20135). Feature selection for machine learning: comparing a correlation-based filter approach to the wrapper. Proceedings of the 12th International FLAIRS Conference, Orlando, FL, USA."},{"key":"ref_41","unstructured":"Hall, M.A. (1999). Correlation-Based Feature Selection for Machine Learning. [Ph.D. Dissertation, The University of Waikato, Department of Computer Science]."},{"key":"ref_42","unstructured":"Bouckaert, R.R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., and Scuse, D. (2008). WEKA Manual for Version 3\u20136-0, The University of Waikato. Available online: http:\/\/citeseerx.ist.psu.edu\/viewdoc\/summary?doi=10.1.1.153.9743."},{"key":"ref_43","unstructured":"Aha, D.W., and Bankert, R.L. (1994). Feature selection for case-based classification of cloud types: An empirical comparison. Case-Based Reasoning: Papers From the 1994 Workshop (Technical Report WS-94\u201301), Advancement of Artificial Intelligence (AAAI). Available online: https:\/\/www.aaai.org\/Papers\/Workshops\/1994\/WS-94-01\/WS94-01-019.pdf."},{"key":"ref_44","unstructured":"Tetko, I., Baskin, I., and Varnek, A. (2017, November 13). Tutorial on Machine Learning, Part 2: Descriptor Selection Bias. Available online: http:\/\/infochim.u-strasbg.fr\/CS3\/program\/Tutorials\/Tutorial2b.pdf."},{"key":"ref_45","unstructured":"Wilt, C., Thayer, J., and Ruml, W.A. (2010, January 8\u201310). Comparison of Greedy Search Algorithms. Proceedings of the Third Annual Symposium on Combinatorial Search (SoCS-10), Atlanta, GA, USA."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"336","DOI":"10.5589\/m04-016","article-title":"The RADARSAT-2 SAR processor","volume":"30","author":"Thompson","year":"2004","journal-title":"Can. J. Remote Sens."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"2347","DOI":"10.1890\/00-0634","article-title":"Giving meaningful interpretation to ordination axes: Assessing loading significance in principal component analysis","volume":"84","author":"Jackson","year":"2003","journal-title":"Ecology"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"974","DOI":"10.1016\/j.csda.2004.06.015","article-title":"How many principal components? Stopping rules for determining the number of non-trivial axes revisited","volume":"49","author":"Jackson","year":"2005","journal-title":"Comput. Stat. Data Anal."},{"key":"ref_49","unstructured":"Sant\u2019Anna, A.S., and Chaves Neto, A. (2005). Multivariate Data Analysis. An\u00e1lise Multivariada de Dados, Bookman. [Fifth ed.]."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1207\/s15327906mbr0102_10","article-title":"The Scree Test For The Number of Factors","volume":"1","author":"Cattell","year":"1966","journal-title":"Multivar. Behav. Res."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"2204","DOI":"10.2307\/1939574","article-title":"Stopping Rules in Principal Components Analysis: A Comparison of Heuristical and Statistical Approaches","volume":"74","author":"Jackson","year":"1993","journal-title":"Ecology"},{"key":"ref_52","unstructured":"Hammer, \u00d8. (2017, November 13). PAST: Multivariate Statistics. Available online: http:\/\/folk.uio.no\/ohammer\/past\/multivar.html."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1111\/j.2044-8317.1961.tb00061.x","article-title":"A note on Guttman\u2019s lower bound for the number of common factors","volume":"14","author":"Kaiser","year":"1961","journal-title":"Br. J. Stat. Psychol."},{"key":"ref_54","doi-asserted-by":"crossref","unstructured":"Maimon, O., and Rokach, L. (2010). Data Mining and Knowledge Discovery Handbook, Springer Science. [Second ed.].","DOI":"10.1007\/978-0-387-09823-4"},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"440","DOI":"10.1016\/j.hal.2010.02.002","article-title":"Satellite remote sensing of harmful algal blooms: A new multi-algorithm method for detecting the Florida Red Tide (Karenia brevis)","volume":"9","author":"Carvalho","year":"2010","journal-title":"Harmful Algae"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.rse.2010.07.007","article-title":"Long-term evaluation of three satellite ocean color algorithms for identifying harmful algal blooms (Karenia brevis) along the west coast of Florida: A matchup assessment","volume":"115","author":"Carvalho","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/0034-4257(91)90048-B","article-title":"A review of assessing the accuracy of classifications of remotely sensed data","volume":"37","author":"Congalton","year":"1991","journal-title":"Remote Sens. Environ."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"901","DOI":"10.1016\/j.jtcvs.2009.07.055","article-title":"Predictive value of the National Institutes of Health Stroke Scale and the Mini-Mental State Examination for neurologic outcome after coronary artery bypass graft surgery","volume":"139","author":"Nussmeier","year":"2010","journal-title":"J. Thorac. Cardiovasc. Surg."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"4434","DOI":"10.3748\/wjg.15.4434","article-title":"Paraaortic lymph node metastasis in patients with intraabdominal malignancies: CT vs PET","volume":"15","author":"Lee","year":"2009","journal-title":"World J. Gastroenterol."},{"key":"ref_60","unstructured":"Carvalho, G.A. (2008). The Use of Satellite-Based Ocean Color Measurements for Detecting the Florida Red Tide (Karenia brevis). [Ph.D. Thesis, University of Miami (UM\/RSMAS\/MPO)]. Available online: http:\/\/scholarlyrepository.miami.edu\/oa_theses\/116\/."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"460","DOI":"10.1111\/j.1525-1497.2004.30091.x","article-title":"The use of \u201coverall accuracy\u201d to evaluate the validity of screening or diagnostic tests","volume":"19","author":"Alberg","year":"2004","journal-title":"J. Gen. Intern. Med."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"315","DOI":"10.5589\/m06-027","article-title":"Mapping the distribution of an invasive marine alga (Codium fragile spp. tomentosoides) in optically shallow coastal waters using the compact airborne spectrographic imager (CASI)","volume":"32","author":"Theriault","year":"2006","journal-title":"Can. J. Remote Sens."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"2141","DOI":"10.1080\/01431160050029468","article-title":"Cover: Detection of oil spills near offshore installations using synthetic aperture radar (SAR)","volume":"21","author":"Espedal","year":"2000","journal-title":"Int. J. Remote Sens."},{"key":"ref_64","unstructured":"Espedal, H.A. (1998). Detection of oil spill and natural film in the marine environment by spaceborne synthetic aperture radar. [Ph.D. Dissertation, Department of Physics, University of Bergen and Nansen Environmental and Remote Sensing Center (NERSC)]."},{"key":"ref_65","unstructured":"Espedal, H. (July, January 28). Detection of oil spill and natural film in the marine environment by spaceborne SAR. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS \u201999), Hamburg, Germany."},{"key":"ref_66","unstructured":"Holt, B. (2017, November 13). SAR imaging of the ocean surface, Synthetic Aperture Radar Marine User\u2019s Manual, Available online: http:\/\/www.sarusersmanual.com."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1007\/BF02065874","article-title":"A review of methods used to determine the fractal dimension of linear features","volume":"26","author":"Klinkenberg","year":"1994","journal-title":"Math. Geol."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1590\/S1678-58782008000100003","article-title":"Geometry, dynamics and fractals","volume":"30","author":"Bevilacqua","year":"2008","journal-title":"J. Br. Soc. Mech. Sci. Eng."},{"key":"ref_69","first-page":"11","article-title":"Determining the number of factors to retain in EFA: an easy-to-use computer program for carrying out Parallel Analysis","volume":"12","author":"Ledesma","year":"2007","journal-title":"Pract. Assess. Res Eval."},{"key":"ref_70","doi-asserted-by":"crossref","unstructured":"Garcia-Pineda, O., MacDonald, I., and Zimmer, B. (2008, January 8\u201311). Synthetic aperture radar image processing using the Supervised Textural-Neural Network Classification Algorithm. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS \u201908), Boston, MA, USA.","DOI":"10.1109\/IGARSS.2008.4779960"},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"1859","DOI":"10.1016\/j.dsr2.2010.05.005","article-title":"Remote-sensing evaluation of geophysical anomaly sites in the outer continental slope, northern Gulf of Mexico","volume":"57","author":"MacDonald","year":"2010","journal-title":"Deep Sea Res. Part II: Top. Stud. Oceanogr."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"411","DOI":"10.5589\/m09-035","article-title":"Using SAR images to delineate ocean oil slicks with a texture-classifying neural network algorithm (TCNNA)","volume":"35","author":"Zimmer","year":"2009","journal-title":"Can. J. Remote Sens."},{"key":"ref_73","doi-asserted-by":"crossref","unstructured":"Mityagina, M., and Lavrova, O. (2016). Satellite Survey of Inner Seas: Oil Pollution in the Black and Caspian Seas. Remote Sens., 8.","DOI":"10.3390\/rs8100875"},{"key":"ref_74","doi-asserted-by":"crossref","unstructured":"Song, D., Ding, Y., Li, X., Zhang, B., and Xu, M. (2017). Ocean Oil Spill Classification with RADARSAT-2 SAR Based on an Optimized Wavelet Neural Network. Remote Sens., 9.","DOI":"10.3390\/rs9080799"},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"3243","DOI":"10.1080\/01431161.2015.1057301","article-title":"SAR polarimetry for sea oil slick observation","volume":"36","author":"Migliaccio","year":"2015","journal-title":"Int. J. Remote Sen."}],"container-title":["ISPRS International Journal of Geo-Information"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2220-9964\/6\/12\/379\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,9]],"date-time":"2024-06-09T07:51:24Z","timestamp":1717919484000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2220-9964\/6\/12\/379"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,12,6]]},"references-count":75,"journal-issue":{"issue":"12","published-online":{"date-parts":[[2017,12]]}},"alternative-id":["ijgi6120379"],"URL":"https:\/\/doi.org\/10.3390\/ijgi6120379","relation":{},"ISSN":["2220-9964"],"issn-type":[{"value":"2220-9964","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,12,6]]}}}