{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T05:16:52Z","timestamp":1726463812032},"reference-count":62,"publisher":"MDPI AG","issue":"5","license":[{"start":{"date-parts":[[2016,5,16]],"date-time":"2016-05-16T00:00:00Z","timestamp":1463356800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["41371358","41371416"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IJGI"],"abstract":"Most methods used for crop classification rely on the ground-reference data of the same year, which leads to considerable financial and labor cost. In this study, we presented a method that can avoid the requirements of a large number of ground-reference data in the classification year. Firstly, we extracted the Normalized Difference Vegetation Index (NDVI) time series profiles of the dominant crops from MODIS data using the historical ground-reference data in multiple years (2006, 2007, 2009 and 2010). Artificial Antibody Network (ABNet) was then employed to build reference NDVI time series for each crop based on the historical NDVI profiles. Afterwards, images of Landsat and HJ were combined to obtain 30 m image time series with 15-day acquisition frequency in 2011. Next, the reference NDVI time series were transformed to Landsat\/HJ NDVI time series using their linear model. Finally, the transformed reference NDVI profiles were used to identify the crop types in 2011 at 30 m spatial resolution. The result showed that the dominant crops could be identified with overall accuracy of 87.13% and 83.48% in Bole and Manas, respectively. In addition, the reference NDVI profiles generated from multiple years could achieve better classification accuracy than that from single year (such as only 2007). This is mainly because the reference knowledge from multiple years contains more growing conditions of the same crop. Generally, this approach showed potential to identify crops without using large number of ground-reference data at 30 m resolution.<\/jats:p>","DOI":"10.3390\/ijgi5050067","type":"journal-article","created":{"date-parts":[[2016,5,17]],"date-time":"2016-05-17T14:20:11Z","timestamp":1463494811000},"page":"67","source":"Crossref","is-referenced-by-count":31,"title":["Using Moderate-Resolution Temporal NDVI Profiles for High-Resolution Crop Mapping in Years of Absent Ground Reference Data: A Case Study of Bole and Manas Counties in Xinjiang, China"],"prefix":"10.3390","volume":"5","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3711-6157","authenticated-orcid":false,"given":"Pengyu","family":"Hao","sequence":"first","affiliation":[{"name":"The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, CAS Olympic S & T Park, No. 20 Datun Road, P.O. Box 9718, Beijing 100101, China"},{"name":"University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China"}]},{"given":"Li","family":"Wang","sequence":"additional","affiliation":[{"name":"The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, CAS Olympic S & T Park, No. 20 Datun Road, P.O. Box 9718, Beijing 100101, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5771-4168","authenticated-orcid":false,"given":"Yulin","family":"Zhan","sequence":"additional","affiliation":[{"name":"The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, CAS Olympic S & T Park, No. 20 Datun Road, P.O. Box 9718, Beijing 100101, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5959-9351","authenticated-orcid":false,"given":"Zheng","family":"Niu","sequence":"additional","affiliation":[{"name":"The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, CAS Olympic S & T Park, No. 20 Datun Road, P.O. Box 9718, Beijing 100101, China"}]}],"member":"1968","published-online":{"date-parts":[[2016,5,16]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"2101","DOI":"10.1080\/01431161.2012.738946","article-title":"Remote sensing of rice crop areas","volume":"34","author":"Kuenzer","year":"2013","journal-title":"Int. J. Remote Sens."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1016\/j.rse.2011.10.011","article-title":"Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index","volume":"119","author":"Pan","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"466","DOI":"10.1016\/j.rse.2013.08.014","article-title":"Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD)","volume":"140","author":"Hansen","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"8763","DOI":"10.1080\/01431161.2010.550647","article-title":"Temporal segmentation of MODIS time series for improving crop classification in Central Asian irrigation systems","volume":"32","author":"Conrad","year":"2011","journal-title":"Int. J. Remote Sens."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"553","DOI":"10.1016\/j.rse.2012.04.011","article-title":"Object based image analysis and data mining applied to a remotely sensed Landsat time-series to map sugarcane over large areas","volume":"123","author":"Vieira","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1007\/s10044-012-0307-5","article-title":"Bayesian classification and unsupervised learning for isolating weeds in row crops","volume":"17","author":"Durand","year":"2014","journal-title":"Pattern Anal. Appl."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"537","DOI":"10.14358\/PERS.80.6.537-549","article-title":"Annual crop type classification of the US great plains for 2000 to 2011","volume":"80","author":"Howard","year":"2014","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"81","DOI":"10.14358\/PERS.80.1.81","article-title":"Automated cropland classification algorithm (ACCA) for California using multi-sensor remote sensing","volume":"80","author":"Wu","year":"2014","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"2890","DOI":"10.3390\/rs4102890","article-title":"An automated cropland classification algorithm (ACCA) for Tajikistan by combining Landsat, MODIS, and secondary data","volume":"4","author":"Thenkabail","year":"2012","journal-title":"Remote Sens."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.compag.2012.03.005","article-title":"Cropscape: A web service based application for exploring and disseminating us conterminous geospatial cropland data products for decision support","volume":"84","author":"Han","year":"2012","journal-title":"Comput. Electron. Agric."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1016\/j.gloplacha.2013.08.002","article-title":"Satellite based calculation of spatially distributed crop water requirements for cotton and wheat cultivation in Fergana Valley, Uzbekistan","volume":"110","author":"Conrad","year":"2013","journal-title":"Glob. Planet Chang."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.compag.2014.01.010","article-title":"Modeling the spatial distribution of crop sequences at a large regional scale using land-cover survey data: A case from France","volume":"102","author":"Xiao","year":"2014","journal-title":"Comput. Electron. Agric."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.agrformet.2013.03.013","article-title":"Evaluation of a simple approach for crop evapotranspiration partitioning and analysis of the water budget distribution for several crop species","volume":"177","author":"Beziat","year":"2013","journal-title":"Agric. For. Meteorol."},{"key":"ref_14","first-page":"103","article-title":"A support vector machine to identify irrigated crop types using time-series Landsat NDVI data","volume":"34","author":"Zheng","year":"2015","journal-title":"Int. J. Appl. Earth Obs. Geoinform."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"7263","DOI":"10.1080\/01431161.2014.967891","article-title":"Characterizing changes in cropping patterns using sequential Landsat imagery: An adaptive threshold approach and application to Phoenix, Arizona","volume":"35","author":"Fan","year":"2014","journal-title":"Int. J. Remote Sens."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.isprsjprs.2014.04.023","article-title":"Improved maize cultivated area estimation over a large scale combining MODIS-EVI time series data and crop phenological information","volume":"94","author":"Zhang","year":"2014","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.isprsjprs.2013.08.007","article-title":"Impact of feature selection on the accuracy and spatial uncertainty of per-field crop classification using support vector machines","volume":"85","author":"Low","year":"2013","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"799","DOI":"10.14358\/PERS.78.8.799","article-title":"Phenology-based crop classification algorithm and its implications on agricultural water use assessments in California\u2019s Central Valley","volume":"78","author":"Zhong","year":"2012","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_19","unstructured":"Gallego, J., Craig, M., Michaelsen, J., Bossyns, B., and Fritz, S. (2008). Best Practices for Crop Area Estimation with Remote Sensing, European Commission."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"7777","DOI":"10.1080\/01431161.2010.527397","article-title":"A phenology-based approach to map crop types in the San Joaquin Valley, California","volume":"32","author":"Zhong","year":"2011","journal-title":"Int. J. Remote Sens."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.rse.2012.11.009","article-title":"Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data","volume":"130","author":"Brown","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.rse.2013.08.023","article-title":"Efficient corn and soybean mapping with temporal extend ability: A multi-year experiment using Landsat imagery","volume":"140","author":"Zhong","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.compag.2012.07.015","article-title":"Crop type mapping using spectral-temporal profiles and phenological information","volume":"89","author":"Foerster","year":"2012","journal-title":"Comput. Electron. Agric."},{"key":"ref_24","unstructured":"Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., and Harlan, J.C. (1974). Monitoring the Vernal Advancements and Retrogradation of Natural Vegetation."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1016\/S0034-4257(02)00096-2","article-title":"Overview of the radiometric and biophysical performance of the MODIS vegetation indices","volume":"83","author":"Huete","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"1096","DOI":"10.1016\/j.rse.2007.07.019","article-title":"Large-area crop mapping using time-series MODIS 250 m NDVI data: An assessment for the U.S. Central Great Plains","volume":"112","author":"Wardlow","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1016\/j.rse.2006.11.021","article-title":"Analysis of time-series MODIS 250 m vegetation index data for crop classification in the us central great plains","volume":"108","author":"Wardlow","year":"2007","journal-title":"Remote Sens. Environ."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"4841","DOI":"10.1080\/01431161.2011.635715","article-title":"The use of multi-temporal MODIS images with ground data to distinguish cotton from maize and sorghum fields in smallholder agricultural landscapes of Southern Africa","volume":"33","author":"Sibanda","year":"2012","journal-title":"Int. J. Remote Sens."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"7847","DOI":"10.1080\/01431161.2010.531783","article-title":"Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil","volume":"32","author":"Arvor","year":"2011","journal-title":"Int. J. Remote Sens."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"412","DOI":"10.1016\/j.rse.2004.08.002","article-title":"Cropland distributions from temporal unmixing of MODIS data","volume":"93","author":"Lobell","year":"2004","journal-title":"Remote Sens. Environ."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1080\/01431169208904046","article-title":"Linear mixture modeling applied to AVHRR data for crop area estimation","volume":"13","author":"Quarmby","year":"1992","journal-title":"Int. J. Remote Sens."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"1654","DOI":"10.2134\/agronj2007.0170","article-title":"Corn and soybean mapping in the United States using modn time-series data sets","volume":"99","author":"Chang","year":"2007","journal-title":"Agron. J."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"1335","DOI":"10.3390\/rs5031335","article-title":"Mapping the spatial distribution of winter crops at sub-pixel level using AVHRR NDVI time series and neural nets","volume":"5","author":"Atzberger","year":"2013","journal-title":"Remote Sens."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"5409","DOI":"10.1080\/01431161.2013.790574","article-title":"Identifying potential areas of cannabis sativa plantations using object-based image analysis of spot-5 satellite data","volume":"34","author":"Lisita","year":"2013","journal-title":"Int. J. Remote Sens."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"7610","DOI":"10.3390\/rs6087610","article-title":"The potential of time series merged from Landsat-5 TM and HJ-1 CCD for crop classification: A case study for Bole and Manas counties in Xinjiang, China","volume":"6","author":"Hao","year":"2014","journal-title":"Remote Sens."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"4091","DOI":"10.1080\/01431160310001619580","article-title":"Efficiency and accuracy of per-field classification for operational crop mapping","volume":"25","author":"Clevers","year":"2004","journal-title":"Int. J. Remote Sens."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"16023","DOI":"10.3390\/s131216023","article-title":"Comparability of red\/near-infrared reflectance and NDVI based on the spectral response function between MODIS and 30 other satellite sensors using rice canopy spectra","volume":"13","author":"Huang","year":"2013","journal-title":"Sensors"},{"key":"ref_38","unstructured":"LPDAAC Vegetation Indices 16-Day l3 Global 250 m, Available online: https:\/\/lpdaac.usgs.gov\/dataset_discovery\/modis\/modis_products_table\/mod13q1."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"893","DOI":"10.1016\/j.rse.2009.01.007","article-title":"Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and Eo-1 ALI sensors","volume":"113","author":"Chander","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"ref_40","unstructured":"CRESDA GaoFen (GF-1) Satellite. Available online: http:\/\/www.cresda.com\/n16\/n1130\/n188475\/188494.html."},{"key":"ref_41","first-page":"9","article-title":"The effect of atmospheric and topographic correction methods on land cover classification accuracy","volume":"24","author":"Vanonckelen","year":"2013","journal-title":"Int. J. Appl. Earth Obs. Geoinform."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"894","DOI":"10.1109\/TGRS.2011.2162589","article-title":"An adaptive artificial immune network for supervised classification of multi-\/hyperspectral remote sensing imagery","volume":"50","author":"Zhong","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"3129","DOI":"10.1016\/j.rse.2011.06.020","article-title":"A comparison of time series similarity measures for classification and change detection of ecosystem dynamics","volume":"115","author":"Lhermitte","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/0034-4257(93)90013-N","article-title":"The spectral image-processing system (sips)\u2014Interactive visualization and analysis of imaging spectrometer data","volume":"44","author":"Kruse","year":"1993","journal-title":"Remote Sens. Environ."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"1335","DOI":"10.1080\/01431160151144378","article-title":"Crop discrimination with multi-temporal SPOT\/HRV data in the saga plains, Japan","volume":"22","author":"Murakami","year":"2001","journal-title":"Int. J. Remote Sens."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"612","DOI":"10.1016\/j.isprsjprs.2009.04.004","article-title":"Spectral discrimination of papyrus vegetation (Cyperus papyrus L.) in swamp wetlands using field spectrometry","volume":"64","author":"Adam","year":"2009","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.ecolind.2012.10.027","article-title":"Estimating the spatial pattern of soil respiration in Tibetan alpine grasslands using Landsat TM images and MODIS data","volume":"26","author":"Huang","year":"2013","journal-title":"Ecol. Indic."},{"key":"ref_48","doi-asserted-by":"crossref","unstructured":"Gao, F., Masek, J.G., Wolfe, R.E., and Huang, C. (2010). Building a consistent medium resolution satellite data set using moderate resolution imaging spectroradiometer products as reference. J. Appl. Remote Sens., 4.","DOI":"10.1117\/1.3430002"},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"2607","DOI":"10.1080\/01431161.2012.748992","article-title":"Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM + data","volume":"34","author":"Gong","year":"2013","journal-title":"Int. J. Remote Sens."},{"key":"ref_50","unstructured":"Hawthorne, B. Hawth\u2019s Analysis Tools for Arcgis. Available online: http:\/\/www.spatialecology.com\/htools\/overview.php."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.compag.2014.02.003","article-title":"Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multi-temporal rapid-eye images","volume":"103","author":"Conrad","year":"2014","journal-title":"Comput. Electron. Agric."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"6472","DOI":"10.3390\/rs6076472","article-title":"Integration of optical and Synthetic Aperture Radar imagery for improving crop mapping in northwestern Benin, West Africa","volume":"6","author":"Forkuor","year":"2014","journal-title":"Remote Sens."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/0034-4257(91)90048-B","article-title":"A review of assessing the accuracy of classifications of remotely sensed data","volume":"37","author":"Congalton","year":"1991","journal-title":"Remote Sens. Environ."},{"key":"ref_54","first-page":"397","article-title":"Accuracy assessment\u2014A users perspective","volume":"52","author":"Story","year":"1986","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.compag.2004.06.003","article-title":"Determining temporal windows for crop discrimination with Remote Sensing: A case study in south-eastern Australia","volume":"45","author":"McVicar","year":"2004","journal-title":"Comput. Electron. Agric."},{"key":"ref_56","doi-asserted-by":"crossref","unstructured":"Jia, K., Wu, B., and Li, Q. (2013). Crop classification using HJ satellite multispectral data in the North China Plain. J. Appl. Remote Sens., 7.","DOI":"10.1117\/1.JRS.7.073576"},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"1196","DOI":"10.1016\/j.rse.2007.08.011","article-title":"The availability of cloud-free Landsat ETM plus data over the conterminous united states and globally","volume":"112","author":"Ju","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"ref_58","unstructured":"USDA National Agricultural Statistics Service, Available online: http:\/\/www.nass.usda.gov\/research\/Cropland\/SARS1a.htm."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1016\/j.rse.2014.10.012","article-title":"Reconstruction of a complete global time series of daily vegetation index trajectory from long-term AVHRR data","volume":"156","author":"Zhang","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1016\/j.rse.2013.01.011","article-title":"Detecting interannual variation in deciduous broadleaf forest phenology using Landsat TM\/ETM plus data","volume":"132","author":"Melaas","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"547","DOI":"10.1007\/s00484-014-0802-z","article-title":"Interannual variations and trends in global land surface phenology derived from enhanced vegetation index during 1982\u20132010","volume":"58","author":"Zhang","year":"2014","journal-title":"Int. J.Biometeorol."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.rse.2006.05.017","article-title":"Classifying rangeland vegetation type and coverage using a Fourier component based similarity measure","volume":"105","author":"Evans","year":"2006","journal-title":"Remote Sens. Environ."}],"container-title":["ISPRS International Journal of Geo-Information"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2220-9964\/5\/5\/67\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,5]],"date-time":"2024-06-05T00:22:12Z","timestamp":1717546932000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2220-9964\/5\/5\/67"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,5,16]]},"references-count":62,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2016,5]]}},"alternative-id":["ijgi5050067"],"URL":"https:\/\/doi.org\/10.3390\/ijgi5050067","relation":{},"ISSN":["2220-9964"],"issn-type":[{"value":"2220-9964","type":"electronic"}],"subject":[],"published":{"date-parts":[[2016,5,16]]}}}