{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T16:50:36Z","timestamp":1740156636149,"version":"3.37.3"},"reference-count":95,"publisher":"MDPI AG","issue":"8","license":[{"start":{"date-parts":[[2023,7,28]],"date-time":"2023-07-28T00:00:00Z","timestamp":1690502400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"European Union\u2019s Horizon Europe Research and Innovation Programme","award":["No. 101070181"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Future Internet"],"abstract":"Task allocation in edge computing refers to the process of distributing tasks among the various nodes in an edge computing network. The main challenges in task allocation include determining the optimal location for each task based on the requirements such as processing power, storage, and network bandwidth, and adapting to the dynamic nature of the network. Different approaches for task allocation include centralized, decentralized, hybrid, and machine learning algorithms. Each approach has its strengths and weaknesses and the choice of approach will depend on the specific requirements of the application. In more detail, the selection of the most optimal task allocation methods depends on the edge computing architecture and configuration type, like mobile edge computing (MEC), cloud-edge, fog computing, peer-to-peer edge computing, etc. Thus, task allocation in edge computing is a complex, diverse, and challenging problem that requires a balance of trade-offs between multiple conflicting objectives such as energy efficiency, data privacy, security, latency, and quality of service (QoS). Recently, an increased number of research studies have emerged regarding the performance evaluation and optimization of task allocation on edge devices. While several survey articles have described the current state-of-the-art task allocation methods, this work focuses on comparing and contrasting different task allocation methods, optimization algorithms, as well as the network types that are most frequently used in edge computing systems.<\/jats:p>","DOI":"10.3390\/fi15080254","type":"journal-article","created":{"date-parts":[[2023,7,31]],"date-time":"2023-07-31T05:39:32Z","timestamp":1690781972000},"page":"254","source":"Crossref","is-referenced-by-count":20,"title":["Task Allocation Methods and Optimization Techniques in Edge Computing: A Systematic Review of the Literature"],"prefix":"10.3390","volume":"15","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-1024-0000","authenticated-orcid":false,"given":"Vasilios","family":"Patsias","sequence":"first","affiliation":[{"name":"Department of Computer Science, International Hellenic University, 65404 Kavala, Greece"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8481-6087","authenticated-orcid":false,"given":"Petros","family":"Amanatidis","sequence":"additional","affiliation":[{"name":"Department of Computer Science, International Hellenic University, 65404 Kavala, Greece"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0203-0476","authenticated-orcid":false,"given":"Dimitris","family":"Karampatzakis","sequence":"additional","affiliation":[{"name":"Department of Computer Science, International Hellenic University, 65404 Kavala, Greece"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0749-9794","authenticated-orcid":false,"given":"Thomas","family":"Lagkas","sequence":"additional","affiliation":[{"name":"Department of Computer Science, International Hellenic University, 65404 Kavala, Greece"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3591-725X","authenticated-orcid":false,"given":"Kalliopi","family":"Michalakopoulou","sequence":"additional","affiliation":[{"name":"Department of Logistics, Marketing, Hospitality and Analytics, Huddersfield Business School, University of Huddersfield, Huddersfield HD1 3DH, UK"}]},{"given":"Alexandros","family":"Nikitas","sequence":"additional","affiliation":[{"name":"Department of Logistics, Marketing, Hospitality and Analytics, Huddersfield Business School, University of Huddersfield, Huddersfield HD1 3DH, UK"}]}],"member":"1968","published-online":{"date-parts":[[2023,7,28]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Amanatidis, P., Karampatzakis, D., Iosifidis, G., Lagkas, T., and Nikitas, A. (2023). Cooperative Task Execution for Object Detection in Edge Computing: An Internet of Things Application. Appl. Sci., 13.","DOI":"10.3390\/app13084982"},{"key":"ref_2","doi-asserted-by":"crossref","unstructured":"Nikitas, A., Michalakopoulou, K., Njoya, E.T., and Karampatzakis, D. (2020). Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era. Sustainability, 12.","DOI":"10.3390\/su12072789"},{"key":"ref_3","first-page":"3571","article-title":"Offloading in Mobile Edge Computing: Task Allocation and Computational Frequency Scaling","volume":"65","author":"Thinh","year":"2017","journal-title":"IEEE Trans. Commun."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"85714","DOI":"10.1109\/ACCESS.2020.2991734","article-title":"An Overview on Edge Computing Research","volume":"8","author":"Cao","year":"2020","journal-title":"IEEE Access"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"637","DOI":"10.1109\/JIOT.2016.2579198","article-title":"Edge Computing: Vision and Challenges","volume":"3","author":"Shi","year":"2016","journal-title":"IEEE Internet Things J."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1109\/MC.2016.145","article-title":"The Promise of Edge Computing","volume":"49","author":"Shi","year":"2016","journal-title":"Computer"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1108\/K-10-2019-0666","article-title":"Task scheduling mechanisms in fog computing: Review, trends, and perspectives","volume":"50","author":"Yang","year":"2021","journal-title":"Kybernetes"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"742","DOI":"10.1109\/TETCI.2020.3007905","article-title":"A Review on Computational Intelligence Techniques in Cloud and Edge Computing","volume":"4","author":"Asim","year":"2020","journal-title":"IEEE Trans. Emerg. Top. Comput. Intell."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"2131","DOI":"10.1109\/COMST.2021.3106401","article-title":"Resource Scheduling in Edge Computing: A Survey","volume":"23","author":"Luo","year":"2021","journal-title":"IEEE Commun. Surv. Tutor."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"104337","DOI":"10.1016\/j.scs.2022.104337","article-title":"Analysing urban growth using machine learning and open data: An artificial neural network modelled case study of five Greek cities","volume":"89","author":"Tsagkis","year":"2023","journal-title":"Sustain. Cities Soc."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"2443","DOI":"10.1109\/TWC.2020.2964765","article-title":"Optimal Energy Allocation and Task Offloading Policy for Wireless Powered Mobile Edge Computing Systems","volume":"19","author":"Wang","year":"2020","journal-title":"IEEE Trans. Wirel. Commun."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"101778","DOI":"10.1016\/j.sysarc.2020.101778","article-title":"Task allocation algorithm and optimization model on edge collaboration","volume":"110","author":"Deng","year":"2020","journal-title":"J. Syst. Archit."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"18863","DOI":"10.1109\/ACCESS.2020.2968465","article-title":"Delay-optimized V2V-based computation offloading in urban vehicular edge computing and networks","volume":"8","author":"Chen","year":"2020","journal-title":"IEEE Access"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1186\/s13677-020-00175-w","article-title":"An efficient task offloading scheme in vehicular edge computing","volume":"9","author":"Raza","year":"2020","journal-title":"J. Cloud Comput."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1357","DOI":"10.1109\/TPDS.2019.2962435","article-title":"On-Edge Multi-Task Transfer Learning: Model and Practice with Data-Driven Task Allocation","volume":"31","author":"Chen","year":"2020","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"1358","DOI":"10.1109\/JIOT.2020.3011286","article-title":"A Machine Learning Approach for Task and Resource Allocation in Mobile-Edge Computing-Based Networks","volume":"8","author":"Wang","year":"2021","journal-title":"IEEE Internet Things J."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1186\/s13638-019-1624-9","article-title":"A new load balancing strategy by task allocation in edge computing based on intermediary nodes","volume":"2020","author":"Li","year":"2020","journal-title":"Eurasip J. Wirel. Commun. Netw."},{"key":"ref_18","first-page":"8843","article-title":"Federated Learning for Task and Resource Allocation in Wireless High-Altitude Balloon Networks","volume":"69","author":"Wang","year":"2021","journal-title":"IEEE Internet Things J."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"8843","DOI":"10.1109\/TVT.2020.2996254","article-title":"Joint Optimization of Offloading and Resources Allocation in Secure Mobile Edge Computing Systems","volume":"69","author":"Wang","year":"2020","journal-title":"IEEE Trans. Veh. Technol."},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Mutlag, A., Ghani, M., Mohammed, M., Lakhan, A., Mohd, O., Abdulkareem, K., and Garcia-Zapirain, B. (2021). Multi-agent systems in fog\u2013cloud computing for critical healthcare task management model (CHTM) used for ECG monitoring. Sensors, 21.","DOI":"10.3390\/s21206923"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"16152","DOI":"10.1109\/ACCESS.2021.3049883","article-title":"Joint Task Offloading and Resource Allocation for Multi-Task Multi-Server NOMA-MEC Networks","volume":"9","author":"Xue","year":"2021","journal-title":"IEEE Access"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"7871","DOI":"10.1109\/TII.2021.3059640","article-title":"Vehicular Computation Offloading for Industrial Mobile Edge Computing","volume":"17","author":"Zhao","year":"2021","journal-title":"IEEE Trans. Ind. Inform."},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Braud, T., Zhou, P., Kangasharju, J., and Hui, P. (2020, January 23\u201327). Multipath Computation Offloading for Mobile Augmented Reality. Proceedings of the 18th Annual IEEE International Conference on Pervasive Computing and Communications, PerCom 2020, Austin, TX, USA.","DOI":"10.1109\/PerCom45495.2020.9127360"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13638-021-01895-6","article-title":"A new task offloading algorithm in edge computing","volume":"2021","author":"Zhang","year":"2021","journal-title":"Eurasip J. Wirel. Commun. Netw."},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Michailidis, E., Miridakis, N., Michalas, A., Skondras, E., and Vergados, D. (2021). Energy optimization in dual-ris uav-aided mec-enabled internet of vehicles. Sensors, 21.","DOI":"10.3390\/s21134392"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"11384","DOI":"10.1109\/JIOT.2020.2999025","article-title":"Toward Privacy-Aware Task Allocation in Social Sensing-Based Edge Computing Systems","volume":"7","author":"Zhang","year":"2020","journal-title":"IEEE Internet Things J."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"158488","DOI":"10.1109\/ACCESS.2020.3020233","article-title":"Task allocation mechanism of power internet of things based on cooperative edge computing","volume":"8","author":"Wang","year":"2020","journal-title":"IEEE Access"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"72985","DOI":"10.1109\/ACCESS.2020.2987574","article-title":"Online Scheduling Optimization for DAG-Based Requests through Reinforcement Learning in Collaboration Edge Networks","volume":"8","author":"Zhang","year":"2020","journal-title":"IEEE Access"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"119700","DOI":"10.1109\/ACCESS.2021.3108342","article-title":"Energy-Efficient Task Allocation of Heterogeneous Resources in Mobile Edge Computing","volume":"9","author":"Liu","year":"2021","journal-title":"IEEE Access"},{"key":"ref_30","first-page":"1501403","article-title":"Task Allocation Optimization Scheme Based on Queuing Theory for Mobile Edge Computing in 5G Heterogeneous Networks","volume":"2020","author":"Xue","year":"2020","journal-title":"Mob. Inf. Syst."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"49212","DOI":"10.1109\/ACCESS.2020.2979939","article-title":"A Decentralized Latency-Aware Task Allocation and Group Formation Approach with Fault Tolerance for IoT Applications","volume":"8","author":"Mudassar","year":"2020","journal-title":"IEEE Access"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"107528","DOI":"10.1016\/j.compeleceng.2021.107528","article-title":"Privacy-preserving task allocation for edge computing-based mobile crowdsensing","volume":"97","author":"Ding","year":"2022","journal-title":"Comput. Electr. Eng."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"78482","DOI":"10.1109\/ACCESS.2020.2989353","article-title":"A method for deploying distributed denial of service attack defense strategies on edge servers using reinforcement learning","volume":"9","author":"Zhang","year":"2020","journal-title":"IEEE Access"},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Pan, Y., Jiang, H., Zhu, H., and Wang, J. (2020, January 7\u201311). Latency Minimization for Task Offloading in Hierarchical Fog-Computing C-RAN Networks. Proceedings of the IEEE International Conference on Communications, Dublin, Ireland.","DOI":"10.1109\/ICC40277.2020.9149343"},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Muneeb, M., Ko, K.M., and Park, Y.H. (2021). A fog computing architecture with multi-layer for computing-intensive iot applications. Appl. Sci., 11.","DOI":"10.3390\/app112411585"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"012195","DOI":"10.1088\/1742-6596\/1757\/1\/012195","article-title":"Computation Offloading Based on Improved Glowworm Swarm Optimization Algorithm in Mobile Edge Computing","volume":"1757","author":"Fu","year":"2021","journal-title":"J. Phys. Conf. Ser."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"111086","DOI":"10.1016\/j.jss.2021.111086","article-title":"Supporting IoT applications deployment on edge-based infrastructures using multi-layer feature models","volume":"183","author":"Amor","year":"2022","journal-title":"J. Syst. Softw."},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Alorbani, A., and Bauer, M. (2021, January 7\u201310). Load Balancing and Resource Allocation in Smart Cities using Reinforcement Learning. Proceedings of the 2021 IEEE International Smart Cities Conference, ISC2 2021, Virtual Conference.","DOI":"10.1109\/ISC253183.2021.9562941"},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Chen, W., Zhu, Y., Liu, J., and Chen, Y. (2021). Enhancing mobile edge computing with efficient load balancing using load estimation in ultra-dense network. Sensors, 21.","DOI":"10.3390\/s21093135"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"121920","DOI":"10.1109\/ACCESS.2020.3007168","article-title":"Privacy-Preserving Cost Minimization in Mobile Crowd Sensing Supported by Edge Computing","volume":"8","author":"Li","year":"2020","journal-title":"IEEE Access"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"16742","DOI":"10.1109\/JIOT.2022.3164441","article-title":"Dynamic Task Allocation and Service Migration in Edge-Cloud IoT System Based on Deep Reinforcement Learning","volume":"9","author":"Chen","year":"2022","journal-title":"IEEE Internet Things J."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1007\/s12530-021-09379-0","article-title":"Intelligent tasks allocation at the edge based on machine learning and bio-inspired algorithms","volume":"13","author":"Soula","year":"2022","journal-title":"Evol. Syst."},{"key":"ref_43","first-page":"9319136","article-title":"Computation Offloading Strategy for IoT Using Improved Particle Swarm Algorithm in Edge Computing","volume":"2022","author":"Li","year":"2022","journal-title":"Wirel. Commun. Mob. Comput."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"138200","DOI":"10.1109\/ACCESS.2021.3117870","article-title":"Server Placement and Task Allocation for Load Balancing in Edge-Computing Networks","volume":"9","author":"Huang","year":"2021","journal-title":"IEEE Access"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"911","DOI":"10.1016\/j.dcan.2022.08.010","article-title":"A novel fault-tolerant scheduling approach for collaborative workflows in an edge-IoT environment","volume":"8","author":"Long","year":"2022","journal-title":"Digit. Commun. Netw."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"8229","DOI":"10.1109\/TCOMM.2022.3216645","article-title":"Task Allocation for Energy Optimization in Fog Computing Networks With Latency Constraints","volume":"70","author":"Kopras","year":"2022","journal-title":"IEEE Trans. Commun."},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Huang, S., Zhang, J., and Wu, Y. (2022). Altitude Optimization and Task Allocation of UAV-Assisted MEC Communication System. Sensors, 22.","DOI":"10.3390\/s22208061"},{"key":"ref_48","doi-asserted-by":"crossref","unstructured":"Katayama, Y., and Tachibana, T. (2022). Optimal Task Allocation Algorithm Based on Queueing Theory for Future Internet Application in Mobile Edge Computing Platform. Sensors, 22.","DOI":"10.3390\/s22134825"},{"key":"ref_49","doi-asserted-by":"crossref","unstructured":"Zhang, M., Cao, J., Yang, L., Zhang, L., Sahni, Y., and Jiang, S. (2022, January 5\u20138). ENTS: An Edge-native Task Scheduling System for Collaborative Edge Computing. Proceedings of the Proceedings\u20142022 IEEE\/ACM 7th Symposium on Edge Computing, SEC 2022, Seattle, WA, USA.","DOI":"10.1109\/SEC54971.2022.00019"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"116","DOI":"10.1587\/transcom.2021CEI0001","article-title":"Efficient Task Allocation Protocol for a Hybrid-Hierarchical Spatial-Aerial-Terrestrial Edge-Centric IoT Architecture","volume":"2022","author":"Jamalipour","year":"2022","journal-title":"IEICE Trans. Commun."},{"key":"ref_51","first-page":"9821793","article-title":"FLOM: Toward Efficient Task Processing in Big Data with Federated Learning","volume":"2023","author":"Wu","year":"2023","journal-title":"Secur. Commun. Netw."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"792","DOI":"10.1016\/j.future.2021.07.018","article-title":"Data-flow driven optimal tasks distribution for global heterogeneous systems","volume":"2021","author":"Garcia","year":"2021","journal-title":"Future Gener. Comput. Syst."},{"key":"ref_53","doi-asserted-by":"crossref","unstructured":"Alhaizaey, Y., Singer, J., and Michala, A. (2021, January 7\u201311). Optimizing task allocation for edge micro-clusters in smart cities. Proceedings of the Proceedings\u20142021 IEEE 22nd International Symposium on a World of Wireless, Mobile and Multimedia Networks, WoWMoM 2021, Pisa, Italy.","DOI":"10.1109\/WoWMoM51794.2021.00062"},{"key":"ref_54","doi-asserted-by":"crossref","unstructured":"Houmani, Z., Balouek-Thomert, D., Caron, E., and Parashar, M. (2021, January 26\u201329). Enabling microservices management for Deep Learning applications across the Edge-Cloud Continuum. Proceedings of the Proceedings\u2014Symposium on Computer Architecture and High Performance Computing, Virtual Event.","DOI":"10.1109\/SBAC-PAD53543.2021.00025"},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Li, D., Qin, N., Li, B., Jing, X., Du, C., and Wan, C. (2021, January 24\u201325). Resource allocation method based on massive MIMO NOMA MEC on distribution communication network. Proceedings of the IOP Conference Series: Earth and Environmental Science, Surakarta, Indonesia.","DOI":"10.1088\/1755-1315\/634\/1\/012069"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"56496","DOI":"10.1109\/ACCESS.2021.3072216","article-title":"QoS-Aware Task Scheduling in Cloud-Edge Environment","volume":"9","author":"Lu","year":"2021","journal-title":"IEEE Access"},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1016\/j.procs.2020.09.040","article-title":"Multi-agent task allocation based on the learning of managers and local preference selections","volume":"2020","author":"Ishihara","year":"2020","journal-title":"Procedia Comput. Sci."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1186\/s13677-022-00342-1","article-title":"Energy-efficient allocation for multiple tasks in mobile edge computing","volume":"11","author":"Liu","year":"2022","journal-title":"J. Cloud Comput."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1186\/s13638-022-02135-1","article-title":"Blockchain-based multi-skill mobile crowdsourcing services","volume":"2022","author":"Xu","year":"2022","journal-title":"Eurasip J. Wirel. Commun. Netw."},{"key":"ref_60","doi-asserted-by":"crossref","unstructured":"Buschmann, P., Shorim, M., Helm, M., Br\u00f6ring, A., and Carle, G. (2022, January 7\u201310). Task Allocation in Industrial Edge Networks with Particle Swarm Optimization and Deep Reinforcement Learning. Proceedings of the ACM International Conference Proceeding Series, Delft, Netherlands.","DOI":"10.1145\/3567445.3571114"},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"12206","DOI":"10.1109\/TVT.2022.3192345","article-title":"Latency Minimization for mmWave D2D Mobile Edge Computing Systems: Joint Task Allocation and Hybrid Beamforming Design","volume":"71","author":"Liu","year":"2022","journal-title":"IEEE Trans. Veh. Technol."},{"key":"ref_62","doi-asserted-by":"crossref","unstructured":"Xuefeng, N., and Yao, G. (2022, January 11\u201313). Design of intelligent operation inspection platform based on the multi-agent system for live line measurement of substation. Proceedings of the Journal of Physics: Conference Series, Foshan, China.","DOI":"10.1088\/1742-6596\/2401\/1\/012088"},{"key":"ref_63","doi-asserted-by":"crossref","unstructured":"Wang, C., Jia, B., Yu, H., Chen, L., Cheng, K., and Wang, X. (2022, January 11\u201313). Attention-aided Federated Learning for Dependency-Aware Collaborative Task Allocation in Edge-Assisted Smart Grid Scenarios. Proceedings of the 2022 IEEE\/CIC International Conference on Communications in China, ICCC, Foshan, China.","DOI":"10.1109\/ICCC55456.2022.9880777"},{"key":"ref_64","first-page":"3744523","article-title":"Mobile Edge Computing Application in English Teaching Classroom Evaluation System Based on BPSO Algorithm","volume":"2022","author":"Yu","year":"2022","journal-title":"Mob. Inf. Syst."},{"key":"ref_65","first-page":"5926792","article-title":"Certificateless Batch Authentication Scheme and Intrusion Detection Model Based on the Mobile Edge Computing Technology NDN-IoT Environment","volume":"2022","author":"Sun","year":"2022","journal-title":"J. Funct. Spaces"},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"72416","DOI":"10.1109\/ACCESS.2022.3189682","article-title":"Distributed Location-Aware Task Offloading in Multi-UAVs Enabled Edge Computing","volume":"10","author":"Liu","year":"2022","journal-title":"IEEE Access"},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"377225","DOI":"10.1155\/2022\/1377225","article-title":"Resource Optimization in MEC-Assisted Multirobot Cooperation Systems","volume":"2022","author":"Qiu","year":"2022","journal-title":"Wirel. Commun. Mob. Comput."},{"key":"ref_68","doi-asserted-by":"crossref","unstructured":"Eyckerman, R., Reiter, P., Mercelis, S., Latre, S., Marquez-Barja, J., and Hellinckx, P. (2021, January 20\u201322). A Generalized Approach For Practical Task Allocation Using A MAPE-K Control Loop. Proceedings of the International Conference on ICT Convergence, Jeju Island, Republic of Korea.","DOI":"10.1109\/ICTC52510.2021.9620217"},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"158481","DOI":"10.1109\/ACCESS.2021.3128746","article-title":"Application Loading and Computing Allocation for Collaborative Edge Computing","volume":"9","author":"Sun","year":"2021","journal-title":"IEEE Access"},{"key":"ref_70","doi-asserted-by":"crossref","unstructured":"Cumino, P., and Sargento, S. (2020, January 20\u201322). Flying Mobile Edge Computing towards 5G and beyond: An Overview on current use cases and challenges. Proceedings of the 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP 2020, Porto, Portugal.","DOI":"10.1109\/CSNDSP49049.2020.9249641"},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"1468","DOI":"10.1109\/TGCN.2022.3189413","article-title":"Joint Wireless Resource and Computation Offloading Optimization for Energy Efficient Internet of Vehicles","volume":"6","author":"Pliatsios","year":"2022","journal-title":"IEEE Trans. Green Commun. Netw."},{"key":"ref_72","doi-asserted-by":"crossref","unstructured":"Elgendy, I.A., Meshoul, S., and Hammad, M. (2023). Joint Task Offloading, Resource Allocation, and Load-Balancing Optimization in Multi-UAV-Aided MEC Systems. Appl. Sci., 13.","DOI":"10.3390\/app13042625"},{"key":"ref_73","doi-asserted-by":"crossref","unstructured":"Pliatsios, D., Lagkas, T., Argyriou, V., Sarigiannidis, A., Margounakis, D., Saoulidis, T., and Sarigiannidis, P. (2022, January 2\u20135). A Hybrid RF-FSO Offloading Scheme for Autonomous Industrial Internet of Things. Proceedings of the IEEE INFOCOM 2022\u2014IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), New York, NY, USA.","DOI":"10.1109\/INFOCOMWKSHPS54753.2022.9798011"},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"7783","DOI":"10.1109\/TVT.2023.3238771","article-title":"Joint Multi-task Offloading and Resource Allocation for Mobile Edge Computing Systems in Satellite IoT","volume":"72","author":"Chai","year":"2023","journal-title":"IEEE Trans. Veh. Technol."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"4277","DOI":"10.1109\/TITS.2022.3230430","article-title":"Joint Task Offloading and Resource Allocation for Vehicular Edge Computing Based on V2I and V2V Modes","volume":"24","author":"Fan","year":"2023","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"10497","DOI":"10.1109\/JIOT.2023.3240173","article-title":"Cooperative UAV Resource Allocation and Task Offloading in Hierarchical Aerial Computing Systems: A MAPPO Based Approach","volume":"10","author":"Kang","year":"2023","journal-title":"IEEE Internet Things J."},{"key":"ref_77","doi-asserted-by":"crossref","unstructured":"Wang, S., and Gong, Y. (2023). Joint Power Control and Task Offloading in Collaborative Edge-Cloud Computing Networks. IEEE Internet Things J., early access.","DOI":"10.1109\/JIOT.2023.3264857"},{"key":"ref_78","doi-asserted-by":"crossref","unstructured":"Wang, Z., Sun, Y., Liu, D., Hu, J., Pang, X., Hu, Y., and Ren, K. (2023). Location Privacy-Aware Task Offloading in Mobile Edge Computing. IEEE Trans. Mob. Comput., early access.","DOI":"10.1109\/TMC.2023.3254553"},{"key":"ref_79","first-page":"2169","article-title":"Mobility-Aware Multi-Hop Task Offloading for Autonomous Driving in Vehicular Edge Computing and Networks","volume":"24","author":"Liu","year":"2023","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"278","DOI":"10.1080\/01441647.2015.1065456","article-title":"How to Write a Literature Review Paper?","volume":"36","author":"Wee","year":"2016","journal-title":"Transp. Rev."},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1016\/j.jbusres.2019.07.039","article-title":"Literature review as a research methodology: An overview and guidelines","volume":"104","author":"Snyder","year":"2019","journal-title":"J. Bus. Res."},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1146\/annurev-environ-012220-024657","article-title":"The Environmental and Resource Dimensions of Automated Transport: A Nexus for Enabling Vehicle Automation to Support Sustainable Urban Mobility","volume":"46","author":"Nikitas","year":"2021","journal-title":"Annu. Rev. Environ. Resour."},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.infsof.2008.09.009","article-title":"Systematic literature reviews in software engineering\u2014A systematic literature review","volume":"51","author":"Kitchenham","year":"2009","journal-title":"Inf. Softw. Technol."},{"key":"ref_84","unstructured":"(2023, July 25). Scopus. Available online: https:\/\/www.scopus.com\/."},{"key":"ref_85","doi-asserted-by":"crossref","unstructured":"Karanika, A., Soula, M., Anagnostopoulos, C., Kolomvatsos, K., and Stamoulis, G. (2019, January 10\u201312). Optimized analytics query allocation at the edge of the network. Proceedings of the Internet and Distributed Computing Systems: 12th International Conference, IDCS 2019, Naples, Italy. Proceedings 12.","DOI":"10.1007\/978-3-030-34914-1_18"},{"key":"ref_86","doi-asserted-by":"crossref","unstructured":"Roy, S., Panda, P., Srinivasan, G., and Raghunathan, A. (2020, January 19\u201324). Pruning Filters while Training for Efficiently Optimizing Deep Learning Networks. Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK.","DOI":"10.1109\/IJCNN48605.2020.9207588"},{"key":"ref_87","unstructured":"Allen-Zhu, Z., and Li, Y. (2023). Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning. arXiv."},{"key":"ref_88","unstructured":"Wu, H., Judd, P., Zhang, X., Isaev, M., and Micikevicius, P. (2020). Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation. arXiv."},{"key":"ref_89","doi-asserted-by":"crossref","unstructured":"Abd-Alzhra, A.S., and Al-Tamimi, M.S.H. (2022). Image Compression Using Deep Learning: Methods and Techniques. Iraqi J. Sci., 1299\u20131312.","DOI":"10.24996\/ijs.2022.63.3.34"},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"108346","DOI":"10.1016\/j.sigpro.2021.108346","article-title":"Deep Architectures for Image Compression: A Critical Review","volume":"191","author":"Mishra","year":"2022","journal-title":"Signal Process."},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"103568","DOI":"10.1016\/j.jnca.2022.103568","article-title":"Task offloading paradigm in mobile edge computing-current issues, adopted approaches, and future directions","volume":"212","author":"Akhlaqi","year":"2023","journal-title":"J. Netw. Comput. Appl."},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"25329","DOI":"10.1109\/ACCESS.2023.3256522","article-title":"Resource Scheduling in Edge Computing: Architecture, Taxonomy, Open Issues and Future Research Directions","volume":"11","author":"Dakkak","year":"2023","journal-title":"IEEE Access"},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"100488","DOI":"10.1016\/j.cosrev.2022.100488","article-title":"Dynamic computation offloading for ground and flying robots: Taxonomy, state of art, and future directions","volume":"45","author":"Cheikhrouhou","year":"2022","journal-title":"Comput. Sci. Rev."},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/j.future.2022.03.019","article-title":"Task offloading in vehicular fog computing: State-of-the-art and open issues","volume":"133","author":"Hamdi","year":"2022","journal-title":"Future Gener. Comput. Syst."},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1109\/MNET.107.2100652","article-title":"Incentive Mechanisms for Mobile Edge Computing: Present and Future Directions","volume":"36","author":"Huang","year":"2022","journal-title":"IEEE Netw."}],"container-title":["Future Internet"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1999-5903\/15\/8\/254\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,31]],"date-time":"2023-07-31T14:30:55Z","timestamp":1690813855000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1999-5903\/15\/8\/254"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7,28]]},"references-count":95,"journal-issue":{"issue":"8","published-online":{"date-parts":[[2023,8]]}},"alternative-id":["fi15080254"],"URL":"https:\/\/doi.org\/10.3390\/fi15080254","relation":{},"ISSN":["1999-5903"],"issn-type":[{"type":"electronic","value":"1999-5903"}],"subject":[],"published":{"date-parts":[[2023,7,28]]}}}