{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,30]],"date-time":"2024-07-30T23:40:51Z","timestamp":1722382851022},"reference-count":37,"publisher":"MDPI AG","issue":"3","license":[{"start":{"date-parts":[[2022,3,13]],"date-time":"2022-03-13T00:00:00Z","timestamp":1647129600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Ministry of Science and Higher Education of Russia","award":["FEWM-2020-037 (TUSUR)"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Future Internet"],"abstract":"This paper compares neural networks, specifically Unet, MobileNetV2, VGG16 and YOLOv4-tiny, for image segmentation as part of a study aimed at finding an optimal solution for price tag data analysis. The neural networks considered were trained on an individual dataset collected by the authors. Additionally, this paper covers the automatic image text recognition approach using EasyOCR API. Research revealed that the optimal network for segmentation is YOLOv4-tiny, featuring a cross validation accuracy of 96.92%. EasyOCR accuracy was also calculated and is 95.22%.<\/jats:p>","DOI":"10.3390\/fi14030088","type":"journal-article","created":{"date-parts":[[2022,3,14]],"date-time":"2022-03-14T02:29:43Z","timestamp":1647224983000},"page":"88","source":"Crossref","is-referenced-by-count":6,"title":["Neural Network-Based Price Tag Data Analysis"],"prefix":"10.3390","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5305-3312","authenticated-orcid":false,"given":"Pavel","family":"Laptev","sequence":"first","affiliation":[{"name":"Faculty of Security, Tomsk State University of Control Systems and Radioelectronics, 40 Lenina Prospect, 634050 Tomsk, Russia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9642-7057","authenticated-orcid":false,"given":"Sergey","family":"Litovkin","sequence":"additional","affiliation":[{"name":"Faculty of Security, Tomsk State University of Control Systems and Radioelectronics, 40 Lenina Prospect, 634050 Tomsk, Russia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7398-9716","authenticated-orcid":false,"given":"Sergey","family":"Davydenko","sequence":"additional","affiliation":[{"name":"Faculty of Security, Tomsk State University of Control Systems and Radioelectronics, 40 Lenina Prospect, 634050 Tomsk, Russia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3222-9956","authenticated-orcid":false,"given":"Anton","family":"Konev","sequence":"additional","affiliation":[{"name":"Faculty of Security, Tomsk State University of Control Systems and Radioelectronics, 40 Lenina Prospect, 634050 Tomsk, Russia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8000-2716","authenticated-orcid":false,"given":"Evgeny","family":"Kostyuchenko","sequence":"additional","affiliation":[{"name":"Faculty of Security, Tomsk State University of Control Systems and Radioelectronics, 40 Lenina Prospect, 634050 Tomsk, Russia"}]},{"given":"Alexander","family":"Shelupanov","sequence":"additional","affiliation":[{"name":"Faculty of Security, Tomsk State University of Control Systems and Radioelectronics, 40 Lenina Prospect, 634050 Tomsk, Russia"}]}],"member":"1968","published-online":{"date-parts":[[2022,3,13]]},"reference":[{"key":"ref_1","unstructured":"(2022, March 11). The consumer act of the Philippines, Available online: https:\/\/www.officialgazette.gov.ph\/1992\/04\/13\/republic-act-no-7394-s-1992\/."},{"key":"ref_2","unstructured":"(2022, March 11). Administration Code of the Russian Federation, Available online: http:\/\/pravo.gov.ru\/proxy\/ips\/?docbody&nd=102074277."},{"key":"ref_3","unstructured":"(2022, March 11). Consumer Rights Protection Law of the People\u2019s Republic of China, Available online: http:\/\/www.npc.gov.cn\/zgrdw\/englishnpc\/Law\/2007-12\/12\/content_1383812.htm."},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Hassanat, A.B. (2018). Two-point-based binary search trees for accelerating big data classification using KNN. PLoS ONE, 13.","DOI":"10.1371\/journal.pone.0207772"},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Mnasri, S., Nasri, N., van den Bossche, A., and Thierry, V.A.L. (2018, January 25\u201329). 3D indoor redeployment in IoT collection networks: A real prototyping using a hybrid PI-NSGA-III-VF. Proceedings of the 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC), Limassol, Cyprus.","DOI":"10.1109\/IWCMC.2018.8450372"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"596","DOI":"10.18287\/2412-6179-CO-621","article-title":"Automatic text-independent speaker verification using convolutional deep belief network","volume":"44","author":"Rakhmanenko","year":"2020","journal-title":"Comput. Opt."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Kostyuchenko, E., Novokhrestova, D., Pekarskikh, S., Shelupanov, A., Nemirovich-Danchenko, M., Choynzonov, E., and Balatskaya, L. (2019, January 20\u201325). Assessment of Syllable Intelligibility Based on Convolutional Neural Networks for Speech Rehabilitation after Speech Organs Surgical Interventions. Proceedings of the International Conference on Speech and Computer, Istanbul, Turkey.","DOI":"10.1007\/978-3-030-26061-3_37"},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Kurtukova, A., Romanov, A., and Shelupanov, A. (2020). Source Code Authorship Identification Using Deep Neural Networks. Symmetry, 12.","DOI":"10.3390\/sym12122044"},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Haurum, J.B., Bahnsen, C.H., Pedersen, M., and Moeslund, T.B. (2020). Water level estimation in sewer pipes using deep convolutional neural networks. Water, 12.","DOI":"10.3390\/w12123412"},{"key":"ref_10","first-page":"1","article-title":"Artificial Neural Network for Lung Cancer Detection","volume":"4","author":"Kweik","year":"2020","journal-title":"Int. J. Acad. Eng. Res."},{"key":"ref_11","first-page":"14","article-title":"Artificial Neural Network for Predicting Diabetes Using JNN","volume":"4","author":"Harz","year":"2020","journal-title":"Int. J. Acad. Eng. Res."},{"key":"ref_12","first-page":"77","article-title":"Price tag recognition using hsv color space","volume":"9","author":"Hussin","year":"2017","journal-title":"J. Telecommun. Electron. Comput. Eng. JTEC"},{"key":"ref_13","first-page":"24","article-title":"Research of the joint use of mathematical morphology and convolutional neural networks for the solution of the price tag recognition problem","volume":"1","author":"Kovtunenko","year":"2020","journal-title":"Bull. Natl. Tech. Univ. KhPI Ser. Syst. Anal. Control Inf. Technol."},{"key":"ref_14","first-page":"608","article-title":"Towards accurate price tag recognition algorithm with multi-task RNN","volume":"48","author":"Mou","year":"2020","journal-title":"Acta Autom. Sin."},{"key":"ref_15","unstructured":"(2021, December 20). Klippa Price Tag Scanning, OCR & Data Capturing. Available online: https:\/\/www.klippa.com\/en\/ocr\/financial-documents\/price-tags\/."},{"key":"ref_16","unstructured":"(2021, December 20). Neti Price Tag Recognition: A Smartphone Instead of a PDT. Available online: https:\/\/ml.i-neti.com\/portfolio-item\/raspoznavanie-tsennikov-zamenite-tsd-na-smartfon\/."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"44247","DOI":"10.1109\/ACCESS.2019.2908991","article-title":"Nas-unet: Neural architecture search for medical image segmentation","volume":"7","author":"Weng","year":"2019","journal-title":"IEEE Access"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"1310","DOI":"10.12928\/telkomnika.v18i3.14753","article-title":"UNet-VGG16 with transfer learning for MRI-based brain tumor segmentation","volume":"18","author":"Pravitasari","year":"2020","journal-title":"Telkomnika"},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Seidaliyeva, U., Akhmetov, D., Ilipbayeva, L., and Matson, E.T. (2020). Real-Time and accurate drone detection in a video with a static background. Sensors, 20.","DOI":"10.3390\/s20143856"},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.C. (2018, January 18\u201323). Mobilenetv2: Inverted residuals and linear bottlenecks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA.","DOI":"10.1109\/CVPR.2018.00474"},{"key":"ref_21","unstructured":"Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition. arXiv."},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Ferguson, M., Ak, R., Lee, Y.T.T., and Law, K.H. (2017, January 11\u201314). Automatic localization of casting defects with convolutional neural networks. Proceedings of the 2017 IEEE International Conference on Big Data, Boston, MA, USA.","DOI":"10.1109\/BigData.2017.8258115"},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Abdurahman, F., Fante, K.A., and Aliy, M. (2021). Malaria parasite detection in thick blood smear microscopic images using modified YOLOV3 and YOLOV4 models. BMC Bioinform., 22.","DOI":"10.1186\/s12859-021-04036-4"},{"key":"ref_24","unstructured":"Bochkovskiy, A., Wang, C.Y., and Liao, H.Y.M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv."},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Wang, C.Y., Bochkovskiy, A., and Liao, H.Y.M. (2021, January 20\u201325). Scaled-yolov4: Scaling cross stage partial network. Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA.","DOI":"10.1109\/CVPR46437.2021.01283"},{"key":"ref_26","unstructured":"(2021, December 20). Pyzbar. Available online: https:\/\/github.com\/NaturalHistoryMuseum\/pyzbar."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.neucom.2015.12.114","article-title":"Mean absolute percentage error for regression models","volume":"192","author":"Golden","year":"2016","journal-title":"Neurocomputing"},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Chen, Y., and Yang, J. (2020, January 19\u201321). Research on Scene Text Recognition Algorithm Basedon Improved CRNN. Proceedings of the 2020 4th International Conference on Digital Signal Processing, Chengdu, China.","DOI":"10.1145\/3408127.3408166"},{"key":"ref_29","unstructured":"Zacharias, E., Teuchler, M., and Bernier, B. (2020). Image Processing Based Scene-Text Detection and Recognition with Tesseract. arXiv."},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Veeranampalayam Sivakumar, A.N., Li, J., Scott, S., Psota, E., JJhala, A., Luck, J.D., and Shi, Y. (2020). Comparison of object detection and patch-based classification deep learning models on mid-to late-season weed detection in UAV imagery. Remote Sens., 12.","DOI":"10.3390\/rs12132136"},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Magalh\u00e3es, S.A., Castro, L., Moreira, G., Dos Santos, F.N., Cunha, M., Dias, J., and Moreira, A.P. (2021). Evaluating the single-shot multibox detector and YOLO deep learning models for the detection of tomatoes in a greenhouse. Sensors, 21.","DOI":"10.3390\/s21103569"},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"da Silva, D.Q., Dos Santos, F.N., Sousa, A.J., and Filipe, V. (2021). Visible and Thermal Image-Based Trunk Detection with Deep Learning for Forestry Mobile Robotics. J. Imaging, 7.","DOI":"10.3390\/jimaging7090176"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"22744","DOI":"10.1038\/s41598-021-02225-y","article-title":"Improved YOLOv4-tiny network for real-time electronic component detection","volume":"11","author":"Guo","year":"2021","journal-title":"Sci. Rep."},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Ayoub, N., and Schneider-Kamp, P. (2021). Real-time on-board deep learning fault detection for autonomous uav inspections. Electronics, 10.","DOI":"10.3390\/electronics10091091"},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Tan, L., Huangfu, T., Wu, L., and Chen, W. (2021). Comparison of YOLO v3, Faster R-CNN, and SSD for Real-Time Pill Identification. BMC Med. Inform. Decis. Mak., 21.","DOI":"10.1186\/s12911-021-01691-8"},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Ramil Brick, E., Caballero Alonso, V., O\u2019Brien, C., Tong, S., Tavernier, E., Parekh, A., Addlesee, A., and Lemon, O. (2021, January 18\u201322). Am I Allergic to This? Assisting Sight Impaired People in the Kitchen. Proceedings of the 2021 International Conference on Multimodal Interaction, New York, NY, USA.","DOI":"10.1145\/3462244.3481000"},{"key":"ref_37","unstructured":"(2021, December 20). EasyOCR. Available online: https:\/\/www.jaided.ai\/easyocr\/."}],"container-title":["Future Internet"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1999-5903\/14\/3\/88\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,27]],"date-time":"2024-07-27T09:41:28Z","timestamp":1722073288000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1999-5903\/14\/3\/88"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,3,13]]},"references-count":37,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2022,3]]}},"alternative-id":["fi14030088"],"URL":"https:\/\/doi.org\/10.3390\/fi14030088","relation":{},"ISSN":["1999-5903"],"issn-type":[{"value":"1999-5903","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,3,13]]}}}