{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:56:38Z","timestamp":1740149798864,"version":"3.37.3"},"reference-count":48,"publisher":"MDPI AG","issue":"8","license":[{"start":{"date-parts":[[2023,7,27]],"date-time":"2023-07-27T00:00:00Z","timestamp":1690416000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["62172186","62002133","61872158","61806083"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Science and Technology Development Plan Project of Jilin Province","award":["20190701019GH","20190701002GH","20210101183JC","20210201072GX","20220101101JC"]},{"name":"Young Science and Technology Talent Lift Project of Jilin Province","award":["QT202013"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Entropy"],"abstract":"Feature selection is a crucial process in machine learning and data mining that identifies the most pertinent and valuable features in a dataset. It enhances the efficacy and precision of predictive models by efficiently reducing the number of features. This reduction improves classification accuracy, lessens the computational burden, and enhances overall performance. This study proposes the improved binary golden jackal optimization (IBGJO) algorithm, an extension of the conventional golden jackal optimization (GJO) algorithm. IBGJO serves as a search strategy for wrapper-based feature selection. It comprises three key factors: a population initialization process with a chaotic tent map (CTM) mechanism that enhances exploitation abilities and guarantees population diversity, an adaptive position update mechanism using cosine similarity to prevent premature convergence, and a binary mechanism well-suited for binary feature selection problems. We evaluated IBGJO on 28 classical datasets from the UC Irvine Machine Learning Repository. The results show that the CTM mechanism and the position update strategy based on cosine similarity proposed in IBGJO can significantly improve the Rate of convergence of the conventional GJO algorithm, and the accuracy is also significantly better than other algorithms. Additionally, we evaluate the effectiveness and performance of the enhanced factors. Our empirical results show that the proposed CTM mechanism and the position update strategy based on cosine similarity can help the conventional GJO algorithm converge faster.<\/jats:p>","DOI":"10.3390\/e25081128","type":"journal-article","created":{"date-parts":[[2023,7,28]],"date-time":"2023-07-28T05:51:47Z","timestamp":1690523507000},"page":"1128","source":"Crossref","is-referenced-by-count":10,"title":["IBGJO: Improved Binary Golden Jackal Optimization with Chaotic Tent Map and Cosine Similarity for Feature Selection"],"prefix":"10.3390","volume":"25","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-4299-9129","authenticated-orcid":false,"given":"Kunpeng","family":"Zhang","sequence":"first","affiliation":[{"name":"College of Computer Science and Technology, Jilin University, Changchun 130012, China"}]},{"given":"Yanheng","family":"Liu","sequence":"additional","affiliation":[{"name":"College of Computer Science and Technology, Jilin University, Changchun 130012, China"},{"name":"Key Laboratory of Symbol Computation and Knowledge Engineering of the Ministry of Education, Jilin University, Changchun 130012, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5506-3741","authenticated-orcid":false,"given":"Fang","family":"Mei","sequence":"additional","affiliation":[{"name":"College of Computer Science and Technology, Jilin University, Changchun 130012, China"},{"name":"Key Laboratory of Symbol Computation and Knowledge Engineering of the Ministry of Education, Jilin University, Changchun 130012, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7802-4908","authenticated-orcid":false,"given":"Geng","family":"Sun","sequence":"additional","affiliation":[{"name":"College of Computer Science and Technology, Jilin University, Changchun 130012, China"},{"name":"Key Laboratory of Symbol Computation and Knowledge Engineering of the Ministry of Education, Jilin University, Changchun 130012, China"}]},{"given":"Jingyi","family":"Jin","sequence":"additional","affiliation":[{"name":"College of Computer Science and Technology, Jilin University, Changchun 130012, China"}]}],"member":"1968","published-online":{"date-parts":[[2023,7,27]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1038\/s42256-020-0146-9","article-title":"Machine learning for active matter","volume":"2","author":"Cichos","year":"2020","journal-title":"Nat. Mach. Intell."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1038\/s41746-019-0193-y","article-title":"Integrating machine learning and multiscale modeling\u2014Perspectives, challenges, and opportunities in the biological, biomedical, and behavioral sciences","volume":"2","author":"Alber","year":"2019","journal-title":"NPJ Digit. Med."},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Proto, S., Di Corso, E., Ventura, F., and Cerquitelli, T. (2018, January 2\u20137). Useful ToPIC: Self-tuning strategies to enhance latent Dirichlet allocation. Proceedings of the 2018 IEEE International Congress on Big Data (BigData Congress), San Francisco, CA, USA.","DOI":"10.1109\/BigDataCongress.2018.00012"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"112898","DOI":"10.1016\/j.eswa.2019.112898","article-title":"Time-varying hierarchical chains of salps with random weight networks for feature selection","volume":"140","author":"Faris","year":"2020","journal-title":"Expert Syst. Appl."},{"key":"ref_5","first-page":"1205","article-title":"Efficient feature selection via analysis of relevance and redundancy","volume":"5","author":"Yu","year":"2004","journal-title":"J. Mach. Learn. Res."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Daraio, E., Di Corso, E., Cerquitelli, T., and Chiusano, S. (2018, January 4\u20137). Characterizing air-quality data through unsupervised analytics methods. Proceedings of the European Conference on Advances in Databases and Information Systems, Barcelona, Spain.","DOI":"10.1007\/978-3-030-00063-9_20"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"907","DOI":"10.1007\/s10462-019-09682-y","article-title":"A review of unsupervised feature selection methods","volume":"53","year":"2020","journal-title":"Artif. Intell. Rev."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"108032","DOI":"10.1109\/ACCESS.2020.3001204","article-title":"IBDA: Iimproved binary dragonfly algorithm with evolutionary population dynamics and adaptive crossover for feature selection","volume":"8","author":"Li","year":"2020","journal-title":"IEEE Access"},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Jovi\u0107, A., Brki\u0107, K., and Bogunovi\u0107, N. (2015, January 25\u201329). A review of feature selection methods with applications. Proceedings of the 2015 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija, Croatia.","DOI":"10.1109\/MIPRO.2015.7160458"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.compeleceng.2013.11.024","article-title":"A survey on feature selection methods","volume":"40","author":"Chandrashekar","year":"2014","journal-title":"Comput. Electr. Eng."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"753","DOI":"10.1007\/s00521-015-2103-9","article-title":"Breast cancer diagnosis using GA feature selection and Rotation Forest","volume":"28","author":"Subasi","year":"2017","journal-title":"Neural Comput. Appl."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"4287","DOI":"10.1007\/s00521-017-3317-9","article-title":"Efficient feature selection and classification algorithm based on PSO and rough sets","volume":"31","author":"Huda","year":"2019","journal-title":"Neural Comput. Appl."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1186\/s13638-016-0623-3","article-title":"Ensemble-based multi-filter feature selection method for DDoS detection in cloud computing","volume":"2016","author":"Osanaiye","year":"2016","journal-title":"EURASIP J. Wirel. Commun. Netw."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"26766","DOI":"10.1109\/ACCESS.2021.3056407","article-title":"Metaheuristic algorithms on feature selection: A survey of one decade of research (2009\u20132019)","volume":"9","author":"Agrawal","year":"2021","journal-title":"IEEE Access"},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Yang, X.S., and Deb, S. (2009, January 9\u201311). Cuckoo search via L\u00e9vy flights. Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), Coimbatore, India.","DOI":"10.1109\/NABIC.2009.5393690"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.advengsoft.2016.01.008","article-title":"The whale optimization algorithm","volume":"95","author":"Mirjalili","year":"2016","journal-title":"Adv. Eng. Softw."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.advengsoft.2017.07.002","article-title":"Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems","volume":"114","author":"Mirjalili","year":"2017","journal-title":"Adv. Eng. Softw."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"4457","DOI":"10.1007\/s00366-021-01479-4","article-title":"Memory-based Harris hawk optimization with learning agents: A feature selection approach","volume":"38","author":"Too","year":"2021","journal-title":"Eng. Comput."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"114778","DOI":"10.1016\/j.eswa.2021.114778","article-title":"An efficient hybrid sine-cosine Harris hawks optimization for low and high-dimensional feature selection","volume":"176","author":"Hussain","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"ref_20","first-page":"335","article-title":"Improved salp swarm algorithm for feature selection","volume":"32","author":"Hegazy","year":"2020","journal-title":"J. King Saud-Univ.-Comput. Inf. Sci."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.eswa.2016.01.021","article-title":"Unsupervised probabilistic feature selection using ant colony optimization","volume":"53","author":"Dadaneh","year":"2016","journal-title":"Expert Syst. Appl."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"116924","DOI":"10.1016\/j.eswa.2022.116924","article-title":"Golden jackal optimization: A novel nature-inspired optimizer for engineering applications","volume":"198","author":"Chopra","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"81177","DOI":"10.1109\/ACCESS.2019.2917502","article-title":"BIFFOA: A novel binary improved fruit fly algorithm for feature selection","volume":"7","author":"Hou","year":"2019","journal-title":"IEEE Access"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/j.patrec.2016.03.014","article-title":"A binary clonal flower pollination algorithm for feature selection","volume":"77","author":"Sayed","year":"2016","journal-title":"Pattern Recognit. Lett."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1424","DOI":"10.1016\/j.ejor.2022.06.029","article-title":"The polynomial robust knapsack problem","volume":"305","author":"Baldo","year":"2023","journal-title":"Eur. J. Oper. Res."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"6843","DOI":"10.1016\/j.eswa.2008.08.022","article-title":"Text feature selection using ant colony optimization","volume":"36","author":"Aghdam","year":"2009","journal-title":"Expert Syst. Appl."},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Nakamura, R.Y.M., Pereira, L.A.M., Costa, K.A., Rodrigues, D., Papa, J.P., and Yang, X.-S. (2012, January 22\u201325). BBA: A binary bat algorithm for feature selection. Proceedings of the Graphics, Patterns and Images: 25th SIBGRAPI Conference, SIBGRAPI 2012, Ouro Preto, Brazil.","DOI":"10.1109\/SIBGRAPI.2012.47"},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Li, W., Kang, H., Feng, T., Li, J., Yue, Z., and Sun, G. (2021, January 14\u201316). Swarm Intelligence-Based Feature Selection: An Improved Binary Grey Wolf Optimization Method. Proceedings of the Knowledge Science, Engineering and Management: 14th International Conference, KSEM 2021, Tokyo, Japan.","DOI":"10.1007\/978-3-030-82153-1_9"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"727","DOI":"10.1007\/s11047-009-9175-3","article-title":"BGSA: Binary gravitational search algorithm","volume":"9","author":"Rashedi","year":"2010","journal-title":"Nat. Comput."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"39496","DOI":"10.1109\/ACCESS.2019.2906757","article-title":"Binary optimization using hybrid grey wolf optimization for feature selection","volume":"7","author":"Kadir","year":"2019","journal-title":"IEEE Access"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1016\/j.eswa.2018.08.051","article-title":"Binary butterfly optimization approaches for feature selection","volume":"116","author":"Arora","year":"2019","journal-title":"Expert Syst. Appl."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3340848","article-title":"Self-adaptive particle swarm optimization for large-scale feature selection in classification","volume":"Volume 13","author":"Xue","year":"2019","journal-title":"ACM Transactions on Knowledge Discovery from Data (TKDD)"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.eswa.2019.06.044","article-title":"Cost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithm","volume":"137","author":"Zhang","year":"2019","journal-title":"Expert Syst. Appl."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1016\/j.asoc.2018.11.001","article-title":"GA-SVM based feature selection and parameter optimization in hospitalization expense modeling","volume":"75","author":"Tao","year":"2019","journal-title":"Appl. Soft Comput."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.patcog.2019.06.003","article-title":"Manifold regularized discriminative feature selection for multi-label learning","volume":"95","author":"Zhang","year":"2019","journal-title":"Pattern Recognit."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"200953","DOI":"10.1109\/ACCESS.2020.3035531","article-title":"A hybrid meta-heuristic feature selection method using golden ratio and equilibrium optimization algorithms for speech emotion recognition","volume":"8","author":"Dey","year":"2020","journal-title":"IEEE Access"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"105946","DOI":"10.1016\/j.asoc.2019.105946","article-title":"Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis","volume":"88","author":"Wang","year":"2020","journal-title":"Appl. Soft Comput."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"1565","DOI":"10.1007\/s00500-019-03988-3","article-title":"Feature selection strategy based on hybrid crow search optimization algorithm integrated with chaos theory and fuzzy c-means algorithm for medical diagnosis problems","volume":"24","author":"Anter","year":"2020","journal-title":"Soft Comput."},{"key":"ref_39","first-page":"1","article-title":"IGJO: An Improved Golden Jackel Optimization Algorithm Using Local Escaping Operator for Feature Selection Problems","volume":"14","author":"Devi","year":"2023","journal-title":"Neural Process. Lett."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"1845","DOI":"10.1007\/s00366-021-01369-9","article-title":"A multi-objective optimization algorithm for feature selection problems","volume":"38","author":"Abdollahzadeh","year":"2022","journal-title":"Eng. Comput."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"113377","DOI":"10.1016\/j.eswa.2020.113377","article-title":"Marine Predators Algorithm: A nature-inspired metaheuristic","volume":"152","author":"Faramarzi","year":"2020","journal-title":"Expert Syst. Appl."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"188","DOI":"10.1007\/s10489-018-1261-8","article-title":"Chaotic dragonfly algorithm: An improved metaheuristic algorithm for feature selection","volume":"49","author":"Sayed","year":"2019","journal-title":"Appl. Intell."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"874","DOI":"10.3390\/rs15040874","article-title":"Boost Correlation Features with 3D-MiIoU-Based Camera-LiDAR Fusion for MODT in Autonomous Driving","volume":"15","author":"Zhang","year":"2023","journal-title":"Remote Sens."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"11027","DOI":"10.1007\/s00521-020-05560-9","article-title":"S-shaped versus V-shaped transfer functions for binary Manta ray foraging optimization in feature selection problem","volume":"33","author":"Ghosh","year":"2021","journal-title":"Neural Comput. Appl."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"4579","DOI":"10.1109\/TCYB.2021.3128540","article-title":"Multiobjective differential evolution for feature selection in classification","volume":"53","author":"Wang","year":"2021","journal-title":"IEEE Trans. Cybern."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"109523","DOI":"10.1016\/j.patcog.2023.109523","article-title":"Feature clustering-Assisted feature selection with differential evolution","volume":"140","author":"Wang","year":"2023","journal-title":"Pattern Recognit."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1109\/TEVC.2020.3016049","article-title":"A duplication analysis-based evolutionary algorithm for biobjective feature selection","volume":"25","author":"Xu","year":"2020","journal-title":"IEEE Trans. Evol. Comput."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.neucom.2015.08.112","article-title":"Efficient kNN classification algorithm for big data","volume":"195","author":"Deng","year":"2016","journal-title":"Neurocomputing"}],"container-title":["Entropy"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1099-4300\/25\/8\/1128\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,15]],"date-time":"2025-01-15T13:53:29Z","timestamp":1736949209000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1099-4300\/25\/8\/1128"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7,27]]},"references-count":48,"journal-issue":{"issue":"8","published-online":{"date-parts":[[2023,8]]}},"alternative-id":["e25081128"],"URL":"https:\/\/doi.org\/10.3390\/e25081128","relation":{},"ISSN":["1099-4300"],"issn-type":[{"type":"electronic","value":"1099-4300"}],"subject":[],"published":{"date-parts":[[2023,7,27]]}}}