{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:56:30Z","timestamp":1740149790570,"version":"3.37.3"},"reference-count":47,"publisher":"MDPI AG","issue":"6","license":[{"start":{"date-parts":[[2023,6,15]],"date-time":"2023-06-15T00:00:00Z","timestamp":1686787200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["61966039"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Xingdian Talent Support Program for Young Talents","award":["XDYC-QNRC-2022-0518"]},{"name":"Education Department of Yunnan Province","award":["2023Y0565"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Entropy"],"abstract":"Due to its wide application across many disciplines, how to make an efficient ranking for nodes in graph data has become an urgent topic. It is well-known that most classical methods only consider the local structure information of nodes, but ignore the global structure information of graph data. In order to further explore the influence of structure information on node importance, this paper designs a structure entropy-based node importance ranking method. Firstly, the target node and its associated edges are removed from the initial graph data. Next, the structure entropy of graph data can be constructed by considering the local and global structure information at the same time, in which case all nodes can be ranked. The effectiveness of the proposed method was tested by comparing it with five benchmark methods. The experimental results show that the structure entropy-based node importance ranking method performs well on eight real-world datasets.<\/jats:p>","DOI":"10.3390\/e25060941","type":"journal-article","created":{"date-parts":[[2023,6,15]],"date-time":"2023-06-15T08:16:57Z","timestamp":1686817017000},"page":"941","source":"Crossref","is-referenced-by-count":3,"title":["The Structure Entropy-Based Node Importance Ranking Method for Graph Data"],"prefix":"10.3390","volume":"25","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-4442-5057","authenticated-orcid":false,"given":"Shihu","family":"Liu","sequence":"first","affiliation":[{"name":"School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650504, China"}]},{"given":"Haiyan","family":"Gao","sequence":"additional","affiliation":[{"name":"School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650504, China"}]}],"member":"1968","published-online":{"date-parts":[[2023,6,15]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Omar, Y.M., and Plapper, P. (2020). A survey of information entropy metrics for complex networks. Entropy, 22.","DOI":"10.3390\/e22121417"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1007\/s11431-020-1683-2","article-title":"A survey on network node ranking algorithms: Representative methods, extensions, and applications","volume":"64","author":"Liu","year":"2021","journal-title":"Sci. China Technol. Sci."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"466","DOI":"10.1016\/j.neucom.2017.04.064","article-title":"Ranking influential nodes in social networks based on node position and neighborhood","volume":"260","author":"Wang","year":"2017","journal-title":"Neurocomputing"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/j.chaos.2017.08.010","article-title":"A new method to identify influential nodes based on relative entropy","volume":"104","author":"Fei","year":"2017","journal-title":"Chaos Solitons Fractals"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"925","DOI":"10.1103\/RevModPhys.87.925","article-title":"Epidemic processes in complex networks","volume":"87","author":"PastorSatorras","year":"2015","journal-title":"Rev. Mod. Phys."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"036603","DOI":"10.1088\/1361-6633\/aa5398","article-title":"Unification of theoretical approaches for epidemic spreading on complex networks","volume":"80","author":"Wang","year":"2017","journal-title":"Rep. Prog. Phys."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"033113","DOI":"10.1063\/1.4890612","article-title":"Efficient allocation of heterogeneous response times in information spreading process","volume":"24","author":"Cui","year":"2014","journal-title":"Chaos Interdiscip. J. Nonlinear Sci."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"590","DOI":"10.1038\/s41567-020-0810-3","article-title":"Phase transitions in information spreading on structured populations","volume":"16","author":"Davis","year":"2020","journal-title":"Nat. Phys."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"026116","DOI":"10.1103\/PhysRevE.85.026116","article-title":"Absence of influential spreaders in rumor dynamics","volume":"85","author":"Javier","year":"2012","journal-title":"Phys. Rev. E"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.comcom.2021.10.041","article-title":"Fast controlling of rumors with limited cost in social networks","volume":"182","author":"Yao","year":"2022","journal-title":"Comput. Commun."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"033131","DOI":"10.1063\/1.4818544","article-title":"Eigenvector centrality of nodes in multiplex networks","volume":"23","author":"Romance","year":"2013","journal-title":"Chaos Interdiscip. J. Nonlinear Sci."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1016\/j.ins.2019.10.003","article-title":"Identification of influencers in complex networks by local information dimensionality","volume":"512","author":"Wen","year":"2020","journal-title":"Inf. Sci."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1016\/j.future.2018.11.023","article-title":"Influential node ranking in social networks based on neighborhood diversity","volume":"94","author":"Zareie","year":"2019","journal-title":"Future Gener. Comput. Syst."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"2150251","DOI":"10.1142\/S0217979221502519","article-title":"A novel centrality measure for identifying influential nodes based on minimum weighted degree decomposition","volume":"35","author":"Lu","year":"2021","journal-title":"Int. J. Mod. Phys. B"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"033120","DOI":"10.1063\/1.5055069","article-title":"Identifying influential spreaders in complex networks by propagation probability dynamics","volume":"29","author":"Chen","year":"2019","journal-title":"Chaos Interdiscip. J. Nonlinear Sci."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1007\/BF02289026","article-title":"A new status index derived from sociometric analysis","volume":"18","author":"Katz","year":"1953","journal-title":"Psychometrika"},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Li, J., Yin, C., Wang, H., Wang, J., and Zhao, N. (2022). Mining Algorithm of Relatively Important Nodes Based on Edge Importance Greedy Strategy. Appl. Sci., 12.","DOI":"10.3390\/app12126099"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"124229","DOI":"10.1016\/j.physa.2020.124229","article-title":"Identifying influential spreaders in complex networks based on improved k-shell method","volume":"554","author":"Wang","year":"2020","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"088903","DOI":"10.1088\/1674-1056\/ab969f","article-title":"Influential nodes identification in complex networks based on global and local information","volume":"29","author":"Yang","year":"2020","journal-title":"Chin. Phys. B"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.eswa.2017.10.018","article-title":"A hierarchical approach for influential node ranking in complex social networks","volume":"93","author":"Zareie","year":"2018","journal-title":"Expert Syst. Appl."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"35","DOI":"10.2307\/3033543","article-title":"A set of measures of centrality based on betweenness","volume":"40","author":"Freeman","year":"1977","journal-title":"Sociometry"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1683","DOI":"10.3389\/fpsyg.2017.01683","article-title":"The influence of closeness centrality on lexical processing","volume":"8","author":"Goldstein","year":"2017","journal-title":"Front. Psychol."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"107198","DOI":"10.1016\/j.knosys.2021.107198","article-title":"An improved gravity model to identify influential nodes in complex networks based on k-shell method","volume":"227","author":"Yang","year":"2021","journal-title":"Knowl.-Based Syst."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"1850216","DOI":"10.1142\/S0217984918502160","article-title":"A dynamic weighted TOPSIS method for identifying influential nodes in complex networks","volume":"32","author":"Yang","year":"2018","journal-title":"Mod. Phys. Lett. B"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1145\/3446217","article-title":"Graph neural networks for fast node ranking approximation","volume":"15","author":"Maurya","year":"2021","journal-title":"ACM Trans. Knowl. Discov. Data"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"109220","DOI":"10.1016\/j.knosys.2022.109220","article-title":"Learning to rank complex network node based on the self-supervised graph convolution model","volume":"251","author":"Liu","year":"2022","journal-title":"Knowl.-Based Syst."},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Gray, R.M. (2011). Entropy and Information Theory, Springer Science & Business Media.","DOI":"10.1007\/978-1-4419-7970-4"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.physa.2015.12.162","article-title":"Identifying influential spreaders in complex networks based on gravity formula","volume":"451","author":"Ma","year":"2016","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.ijar.2020.04.008","article-title":"Entropy and monotonicity in artificial intelligence","volume":"124","author":"Bernadette","year":"2020","journal-title":"Int. J. Approx. Reason."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"065201","DOI":"10.1088\/0031-8949\/88\/06\/065201","article-title":"Identifying node importance based on information entropy in complex networks","volume":"88","author":"Fan","year":"2013","journal-title":"Phys. Scr."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"485","DOI":"10.1016\/j.chaos.2017.09.010","article-title":"Influential nodes ranking in complex networks: An entropy-based approach","volume":"104","author":"Zareie","year":"2017","journal-title":"Chaos Solitons Fractals"},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Guo, C., Yang, L., Chen, X., Chen, D., Gao, H., and Ma, J. (2020). Influential nodes identification in complex networks via information entropy. Entropy, 22.","DOI":"10.3390\/e22020242"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"5554322","DOI":"10.1155\/2021\/5554322","article-title":"Information entropy based on propagation feature of node for identifying the influential nodes","volume":"2021","author":"Zhong","year":"2021","journal-title":"Complexity"},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Yu, Y., Zhou, B., Chen, L., Gao, T., and Liu, J. (2022). Identifying Important Nodes in Complex Networks Based on Node Propagation Entropy. Entropy, 24.","DOI":"10.3390\/e24020275"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"1650118","DOI":"10.1142\/S0129183116501187","article-title":"A new structure entropy of complex networks based on nonextensive statistical mechanics","volume":"27","author":"Zhang","year":"2016","journal-title":"Int. J. Mod. Phys. C"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"112136","DOI":"10.1016\/j.chaos.2022.112136","article-title":"Node influence ranking in complex networks: A local structure entropy approach","volume":"160","author":"Lei","year":"2022","journal-title":"Chaos Solitons Fractals"},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Ai, X. (2017). Node importance ranking of complex networks with entropy variation. Entropy, 19.","DOI":"10.3390\/e19070303"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"1591","DOI":"10.1016\/j.ins.2022.07.030","article-title":"Link prediction algorithm based on the initial information contribution of nodes","volume":"608","author":"Liu","year":"2022","journal-title":"Inf. Sci."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"3463","DOI":"10.1007\/s13042-022-01607-6","article-title":"On rough set based fuzzy clustering for graph data","volume":"13","author":"He","year":"2022","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"344","DOI":"10.1016\/j.physa.2015.03.042","article-title":"Using global diversity and local topology features to identify influential network spreaders","volume":"433","author":"Fu","year":"2015","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"2150620","DOI":"10.1142\/S021798492150620X","article-title":"Critical nodes identification in complex networks via similarity coefficient","volume":"36","author":"Lu","year":"2022","journal-title":"Mod. Phys. Lett. B"},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Li, Y., Cai, W., Li, Y., and Du, X. (2019). Key node ranking in complex networks: A novel entropy and mutual information-based approach. Entropy, 22.","DOI":"10.3390\/e22010052"},{"key":"ref_43","doi-asserted-by":"crossref","unstructured":"Chen, X., Zhou, J., Liao, Z., Liu, S., and Zhang, Y. (2020). A novel method to rank influential nodes in complex networks based on tsallis entropy. Entropy, 22.","DOI":"10.3390\/e22080848"},{"key":"ref_44","first-page":"8928765","article-title":"Identifying Key Nodes in Complex Networks Based on Local Structural Entropy and Clustering Coefficient","volume":"2022","author":"Li","year":"2022","journal-title":"Math. Probl. Eng."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"466","DOI":"10.1016\/j.apm.2020.08.057","article-title":"Analytical features of the SIR model and their applications to COVID-19","volume":"90","author":"Kudryashov","year":"2021","journal-title":"Appl. Math. Model."},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Sheng, J., Zhu, J., Wang, Y., Wang, B., and Hou, Z. (2020). Identifying influential nodes of complex networks based on trust-value. Algorithms, 13.","DOI":"10.3390\/a13110280"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"6173","DOI":"10.1038\/s41598-021-84684-x","article-title":"Identification of nodes influence based on global structure model in complex networks","volume":"11","author":"Ullah","year":"2021","journal-title":"Sci. Rep."}],"container-title":["Entropy"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1099-4300\/25\/6\/941\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,15]],"date-time":"2025-01-15T13:35:03Z","timestamp":1736948103000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1099-4300\/25\/6\/941"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6,15]]},"references-count":47,"journal-issue":{"issue":"6","published-online":{"date-parts":[[2023,6]]}},"alternative-id":["e25060941"],"URL":"https:\/\/doi.org\/10.3390\/e25060941","relation":{},"ISSN":["1099-4300"],"issn-type":[{"type":"electronic","value":"1099-4300"}],"subject":[],"published":{"date-parts":[[2023,6,15]]}}}