{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,9,7]],"date-time":"2023-09-07T15:32:18Z","timestamp":1694100738413},"reference-count":60,"publisher":"MDPI AG","issue":"3","license":[{"start":{"date-parts":[[2023,3,10]],"date-time":"2023-03-10T00:00:00Z","timestamp":1678406400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"National Natural Science Foundation of China","award":["11875034"]},{"name":"Major Program of Jiangxi Provincial Natural Science Foundation","award":["20224ACB201007"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Entropy"],"abstract":"We present a quantum Otto engine model alternatively driven by a hot and a cold heat reservoir and consisting of two isochoric and two adiabatic strokes, where the adiabatic expansion or compression is realized by adiabatically changing the shape of the potential. Here, we show that such an adiabatic deformation may alter operation mode and enhance machine performance by increasing output work and efficiency, even with the advantage of decreasing work fluctuations. If the heat engine in the sudden limit operates under maximal power by optimizing the control parameter, the efficiency shows certain universal behavior, \u03b7*=\u03b7C\/2+\u03b7C2\/8+O(\u03b7C3), where \u03b7C=1\u2212\u03b2hr\/\u03b2cr is the Carnot efficiency, with \u03b2hr(\u03b2cr) being the inverse temperature of the hot (cold) reservoir. However, such efficiency under maximal power can be produced by our machine model in the regimes where the machine without adiabatic deformation can only operate as a heater or a refrigerator.<\/jats:p>","DOI":"10.3390\/e25030484","type":"journal-article","created":{"date-parts":[[2023,3,13]],"date-time":"2023-03-13T08:04:00Z","timestamp":1678694640000},"page":"484","source":"Crossref","is-referenced-by-count":1,"title":["Performance of Quantum Heat Engines Enhanced by Adiabatic Deformation of Trapping Potential"],"prefix":"10.3390","volume":"25","author":[{"given":"Yang","family":"Xiao","sequence":"first","affiliation":[{"name":"Department of Physics, Nanchang University, Nanchang 330031, China"}]},{"given":"Kai","family":"Li","sequence":"additional","affiliation":[{"name":"Department of Physics, Nanchang University, Nanchang 330031, China"}]},{"given":"Jizhou","family":"He","sequence":"additional","affiliation":[{"name":"Department of Physics, Nanchang University, Nanchang 330031, China"}]},{"given":"Jianhui","family":"Wang","sequence":"additional","affiliation":[{"name":"Department of Physics, Nanchang University, Nanchang 330031, China"},{"name":"State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China"}]}],"member":"1968","published-online":{"date-parts":[[2023,3,10]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1119\/1.10023","article-title":"Efficiency of a Carnot engine at maximum power output","volume":"43","author":"Curzon","year":"1975","journal-title":"Am. J. Phys."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"190601","DOI":"10.1103\/PhysRevLett.117.190601","article-title":"Universal trade-off relation between power and efficiency for heat engines","volume":"117","author":"Shiraishi","year":"2016","journal-title":"Phys. Rev. Lett."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"012129","DOI":"10.1103\/PhysRevE.89.012129","article-title":"Weighted reciprocal of temperature, weighted thermal flux, and their applications in finite-time thermodynamics","volume":"89","author":"Sheng","year":"2014","journal-title":"Phys. Rev. E"},{"key":"ref_4","unstructured":"Wu, C., Chen, L., and Chen, L. (2004). Advances in Finite-Time Thermodynamics: Analysis and Optimization, Nova Science."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"014104","DOI":"10.1103\/PhysRevE.105.014104","article-title":"Power statistics of Otto heat engines with the Mpemba effect","volume":"105","author":"Lin","year":"2022","journal-title":"Phys. Rev. E"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"050603","DOI":"10.1103\/PhysRevLett.124.050603","article-title":"J.M.M.; Hern\u00e1ndez, A.C. nergetic self-optimization induced by stability in low-dissipation heat engines","volume":"124","author":"Guo","year":"2020","journal-title":"Phys. Rev. Lett."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"190602","DOI":"10.1103\/PhysRevLett.120.190602","article-title":"Universal trade-off between power, efficiency and constancy in steady-state heat engines","volume":"120","author":"Pietzonka","year":"2018","journal-title":"Phys. Rev. Lett."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"220601","DOI":"10.1103\/PhysRevLett.116.220601","article-title":"Power-Efficiency-Dissipation Relations in Linear Thermodynamics","volume":"116","author":"Proesmans","year":"2016","journal-title":"Phys. Rev. Lett."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"160601","DOI":"10.1103\/PhysRevLett.116.160601","article-title":"Geometric heat engines featuring power that grows with efficiency","volume":"116","author":"Raz","year":"2016","journal-title":"Phys. Rev. Lett."},{"key":"ref_10","first-page":"031019","article-title":"hermodynamics of Micro- and Nano-Systems Driven by Periodic Temperature Variations","volume":"5","author":"Brandner","year":"2015","journal-title":"Phys. Rev. X"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"062134","DOI":"10.1103\/PhysRevE.91.062134","article-title":"Efficiency at maximum power of a quantum heat engine based on two coupled oscillators","volume":"91","author":"Wang","year":"2015","journal-title":"Phys. Rev. E"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"032110","DOI":"10.1103\/PhysRevE.96.032110","article-title":"Quantum Otto engine with exchange coupling in the presence of level degeneracy","volume":"96","author":"Mehta","year":"2017","journal-title":"Phys. Rev. E"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1146\/annurev-physchem-040513-103724","article-title":"Quantum heat engines and refrigerators: Continuous devices","volume":"65","author":"Kosloff","year":"2014","journal-title":"Annu. Rev. Phys. Chem."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"050602","DOI":"10.1103\/PhysRevLett.88.050602","article-title":"Quantum afterburner: Improving the efficiency of an ideal heat engine","volume":"88","author":"Scully","year":"2002","journal-title":"Phys. Rev. Lett."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"013259","DOI":"10.1103\/PhysRevResearch.2.013259","article-title":"Quantum-dot heat engines with irreversible heat transfer","volume":"2","author":"Du","year":"2020","journal-title":"Phys. Rev. Res."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"023003","DOI":"10.1088\/1367-2630\/18\/2\/023003","article-title":"Polaron effects on the performance of light-harvesting systems: A quantum heat engine perspective","volume":"18","author":"Xu","year":"2016","journal-title":"New J. Phys."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"2063","DOI":"10.1038\/s41467-021-22222-z","article-title":"A quantum heat engine driven by atomic collisions","volume":"12","author":"Bouton","year":"2021","journal-title":"Nat. Commun."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"067701","DOI":"10.1103\/PhysRevLett.128.067701","article-title":"Cycle Flux Ranking of Network Analysis in Quantum Thermal Devices","volume":"128","author":"Wang","year":"2022","journal-title":"Phys. Rev. Lett."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"030602","DOI":"10.1103\/PhysRevLett.112.030602","article-title":"Nanoscale heat engine beyond the carnot limit","volume":"112","author":"Rofinagel","year":"2014","journal-title":"Phys. Rev. Lett."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"042120","DOI":"10.1103\/PhysRevE.97.042120","article-title":"Efficiency at maximum power of a laser quantum heat engine enhanced by noise-induced coherence","volume":"97","author":"Dorfman","year":"2018","journal-title":"Phys. Rev. E"},{"key":"ref_21","first-page":"031044","article-title":"Equivalence of quantum heat machines, and quantum-thermodynamic signatures","volume":"5","author":"Uzdin","year":"2015","journal-title":"Phys. Rev. X"},{"key":"ref_22","first-page":"031044","article-title":"Squeezed thermal reservoirs as a resource for a nanomechanical engine beyond the carnot limit","volume":"7","author":"Klaers","year":"2017","journal-title":"Phys. Rev. X"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"052126","DOI":"10.1103\/PhysRevE.100.052126","article-title":"Finite-time performance of a quantum heat engine with a squeezed thermal bath","volume":"100","author":"Wang","year":"2019","journal-title":"Phys. Rev. E"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"053870","DOI":"10.1103\/PhysRevA.95.053870","article-title":"Quantum optomechanical straight-twin engine","volume":"95","author":"Zhang","year":"2017","journal-title":"Phys. Rev. A"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1038\/s41467-017-01991-6","article-title":"Quantum engine efficiency bound beyond the second law of thermodynamics","volume":"9","author":"Niedenzu","year":"2018","journal-title":"Nat. Commun."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"062123","DOI":"10.1103\/PhysRevE.102.062123","article-title":"erformance bounds of nonadiabatic quantum harmonic Otto engine and refrigerator under a squeezed thermal reservoir","volume":"102","author":"Singh","year":"2020","journal-title":"Phys. Rev. E"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"033034","DOI":"10.1088\/1367-2630\/abe9d7","article-title":"Finite-time quantum Stirling heat engine","volume":"23","author":"Raja","year":"2021","journal-title":"New J. Phys."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"012119","DOI":"10.1103\/PhysRevE.90.012119","article-title":"Optimal efficiency of a noisy quantum heat engine","volume":"90","author":"Stefanatos","year":"2014","journal-title":"Phys. Rev. E"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"4290","DOI":"10.1109\/TAC.2017.2684083","article-title":"Minimum-time transitions between thermal equilibrium states of the quantum parametric oscillator","volume":"62","author":"Stefanatos","year":"2017","journal-title":"IEEE Trans. Automat. Control"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"035012","DOI":"10.1088\/1367-2630\/17\/3\/035012","article-title":"onequilibrium fluctuations in quantum heat engines: Theory, example, and possible solid state experiments","volume":"17","author":"Campisi","year":"2015","journal-title":"New J. Phys."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"083012","DOI":"10.1088\/1367-2630\/18\/8\/083012","article-title":"On the operation of machines powered by quantum non-thermal baths","volume":"18","author":"Niedenzu","year":"2016","journal-title":"New J. Phys."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"032130","DOI":"10.1103\/PhysRevE.103.032130","article-title":"Fluctuations in irreversible quantum Otto engines","volume":"103","author":"Jiao","year":"2021","journal-title":"Phys. Rev. E"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"032062(R)","DOI":"10.1103\/PhysRevResearch.2.032062","article-title":"Efficiency fluctuations of a quantum heat engine","volume":"2","author":"Denzler","year":"2020","journal-title":"Phys. Rev. Res."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"052145","DOI":"10.1103\/PhysRevE.90.052145","article-title":"Universal theory of efficiency fluctuations","volume":"90","author":"Verley","year":"2014","journal-title":"Phys. Rev. E"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"013009","DOI":"10.1088\/1367-2630\/18\/1\/013009","article-title":"Thermodynamics of trajectories and local fluctuation theorems for harmonic quantum networks","volume":"18","author":"Pigeon","year":"2016","journal-title":"New J. Phys."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"180601","DOI":"10.1103\/PhysRevLett.99.180601","article-title":"Fluctuation Theorem in Quantum Heat Conduction","volume":"99","author":"Saito","year":"2007","journal-title":"Phys. Rev. Lett."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"027101","DOI":"10.1116\/5.0083192","article-title":"Quantum thermodynamic devices: From theoretical proposals to experimental reality","volume":"4","author":"Myers","year":"2000","journal-title":"AVS Quantum Sci."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"240602","DOI":"10.1103\/PhysRevLett.122.240602","article-title":"Efficiency of a Quantum Otto Heat Engine Operating under a Reservoir at Effective Negative Temperatures","volume":"122","author":"Sarthour","year":"2019","journal-title":"Phys. Rev. Lett."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"240601","DOI":"10.1103\/PhysRevLett.123.240601","article-title":"S.; Oliveira I.S.; Serra, R.M. Experimental Characterization of a Spin Quantum Heat Engine","volume":"123","author":"Peterson","year":"2019","journal-title":"Phys. Rev. Lett."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"545","DOI":"10.1080\/00107514.2016.1201896","article-title":"Quantum thermodynamics","volume":"57","author":"Vinjanampathy","year":"2016","journal-title":"Contemp. Phys."},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Kosloff, R. (2013). Quantum thermodynamics: A dynamical viewpoint. Entropy, 15.","DOI":"10.3390\/e15062100"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"010201","DOI":"10.1088\/1367-2630\/19\/1\/010201","article-title":"Focus on quantum thermodynamics","volume":"19","author":"Anders","year":"2017","journal-title":"New J. Phys."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"230602","DOI":"10.1103\/PhysRevLett.106.230602","article-title":"Thermodynamic Bounds on Efficiency for Systems with Broken Time-Reversal Symmetry","volume":"106","author":"Benenti","year":"2011","journal-title":"Phys. Rev. Lett."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"050601","DOI":"10.1103\/PhysRevLett.111.050601","article-title":"Carnot Cycle at Finite Power: Attainability of Maximal Efficiency","volume":"111","author":"Allahverdyan","year":"2013","journal-title":"Phys. Rev. Lett."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"050601","DOI":"10.1103\/PhysRevLett.114.050601","article-title":"Efficiency Statistics at All Times: Carnot Limit at Finite Power","volume":"114","author":"Polettini","year":"2015","journal-title":"Phys. Rev. Lett."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"090601","DOI":"10.1103\/PhysRevLett.115.090601","article-title":"Onsager Coefficients in Periodically Driven Systems","volume":"115","author":"Proesmans","year":"2015","journal-title":"Phys. Rev. Lett."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"11895","DOI":"10.1038\/ncomms11895","article-title":"The power of a critical heat engine","volume":"7","author":"Campisi","year":"2016","journal-title":"Nat. Commun."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"012151","DOI":"10.1103\/PhysRevE.96.012151","article-title":"Heat engines at optimal power: Low- dissipation versus endoreversible model","volume":"96","author":"Johal","year":"2017","journal-title":"Phys. Rev. E"},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"115428","DOI":"10.1103\/PhysRevB.105.115428","article-title":"Geometric thermodynamic uncertainty relation in a periodically driven thermoelectric heat engine","volume":"105","author":"Lu","year":"2022","journal-title":"Phys. Rev. B"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"070603","DOI":"10.1103\/PhysRevLett.110.070603","article-title":"Strong Bounds on Onsager Coefficients and Efficiency for Three-Terminal Thermoelectric Transport in a Magnetic Field","volume":"110","author":"Brandner","year":"2013","journal-title":"Phys. Rev. Lett."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"121402(R)","DOI":"10.1103\/PhysRevB.94.121402","article-title":"fficiency bounds on thermoelectric transport in magnetic fields: The role of inelastic processes","volume":"94","author":"Yamamoto","year":"2016","journal-title":"Phys. Rev. B"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"016101","DOI":"10.1103\/PhysRevE.68.016101","article-title":"Quantum four-stroke heat engine: Thermodynamic observables in a model with intrinsic friction","volume":"68","author":"Feldmann","year":"2003","journal-title":"Phys. Rev. E"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"031105","DOI":"10.1103\/PhysRevE.76.031105","article-title":"Quantum thermodynamic cycles and quantum heat engines","volume":"76","author":"Quan","year":"2007","journal-title":"Phys. Rev. E"},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"170601","DOI":"10.1103\/PhysRevLett.120.170601","article-title":"single-Atom Heat Machines Enabled by Energy Quantization","volume":"120","author":"Bylinskii","year":"2018","journal-title":"Phys. Rev. Lett."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"990","DOI":"10.1103\/PhysRevLett.78.990","article-title":"Adiabatically Changing the Phase-Space Density of a Trapped Bose Gas","volume":"78","author":"Pinkse","year":"1997","journal-title":"Phys. Rev. Lett."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"041127","DOI":"10.1103\/PhysRevE.84.041127","article-title":"Performance analysis of a two-state quantum heat engine working with a single- mode radiation field in a cavity","volume":"84","author":"Wang","year":"2011","journal-title":"Phys. Rev. E"},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"520","DOI":"10.1119\/1.1456073","article-title":"The hidden symmetry for a quantum system with an infinitely deep square-well potential","volume":"70","author":"Dong","year":"2002","journal-title":"Am. J. Phys."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"120601","DOI":"10.1103\/PhysRevLett.121.120601","article-title":"Cycling Tames Power Fluctuations near Optimum Efficiency","volume":"121","author":"Holubec","year":"2018","journal-title":"Phys. Rev. Lett."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"20003","DOI":"10.1209\/0295-5075\/81\/20003","article-title":"Efficiency at maximum power: An analytically solvable model for stochastic heat engines","volume":"81","author":"Schmiedl","year":"2008","journal-title":"Europhys. Lett."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1088\/1367-2630\/8\/5\/083","article-title":"Irreversible performance of a quantum harmonic heat engine","volume":"8","author":"Rezek","year":"2006","journal-title":"New J. Phys."}],"container-title":["Entropy"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1099-4300\/25\/3\/484\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,13]],"date-time":"2023-03-13T08:07:43Z","timestamp":1678694863000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1099-4300\/25\/3\/484"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,10]]},"references-count":60,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2023,3]]}},"alternative-id":["e25030484"],"URL":"https:\/\/doi.org\/10.3390\/e25030484","relation":{},"ISSN":["1099-4300"],"issn-type":[{"value":"1099-4300","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,3,10]]}}}