{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,11]],"date-time":"2024-08-11T05:09:38Z","timestamp":1723352978319},"reference-count":54,"publisher":"MDPI AG","issue":"8","license":[{"start":{"date-parts":[[2022,8,12]],"date-time":"2022-08-12T00:00:00Z","timestamp":1660262400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Entropy"],"abstract":"In the past decade, various opinion dynamics models have been built to depict the evolutionary mechanism of opinions and use them to predict trends in public opinion. However, model-based predictions alone cannot eliminate the deviation caused by unforeseeable external factors, nor can they reduce the impact of the accumulated random error over time. To solve this problem, we propose a dynamic framework that combines a genetic algorithm and a particle filter algorithm to dynamically calibrate the parameters of the opinion dynamics model. First, we design a fitness function in accordance with public opinion and search for a set of model parameters that best match the initial observation. Second, with successive observations, we tracked the state of the opinion dynamic system by the average distribution of particles. We tested the framework by using several typical opinion dynamics models. The results demonstrate that the proposed method can dynamically calibrate the parameters of the opinion dynamics model to predict public opinion more accurately.<\/jats:p>","DOI":"10.3390\/e24081112","type":"journal-article","created":{"date-parts":[[2022,8,15]],"date-time":"2022-08-15T05:47:21Z","timestamp":1660542441000},"page":"1112","source":"Crossref","is-referenced-by-count":4,"title":["Dynamic Parameter Calibration Framework for Opinion Dynamics Models"],"prefix":"10.3390","volume":"24","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3687-5859","authenticated-orcid":false,"given":"Jiefan","family":"Zhu","sequence":"first","affiliation":[{"name":"College of Systems Engineering, National University of Defense Technology, Changsha 410073, China"}]},{"given":"Yiping","family":"Yao","sequence":"additional","affiliation":[{"name":"College of Systems Engineering, National University of Defense Technology, Changsha 410073, China"}]},{"given":"Wenjie","family":"Tang","sequence":"additional","affiliation":[{"name":"College of Systems Engineering, National University of Defense Technology, Changsha 410073, China"}]},{"given":"Haoming","family":"Zhang","sequence":"additional","affiliation":[{"name":"College of Systems Engineering, National University of Defense Technology, Changsha 410073, China"}]}],"member":"1968","published-online":{"date-parts":[[2022,8,12]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"2050101","DOI":"10.1142\/S0129183120501016","article-title":"From classical to modern opinion dynamics","volume":"31","author":"Noorazar","year":"2020","journal-title":"Int. J. Mod. Phys. C"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"178701","DOI":"10.1103\/PhysRevLett.94.178701","article-title":"Voter model on heterogeneous graphs","volume":"94","author":"Sood","year":"2005","journal-title":"Phys. Rev. Lett."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1140\/epjb\/e2004-00227-5","article-title":"Neighborhood models of minority opinion spreading","volume":"39","author":"Tessone","year":"2004","journal-title":"Eur. Phys. J. B"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1157","DOI":"10.1142\/S0129183100000936","article-title":"Opinion evolution in closed community","volume":"11","author":"Katarzyana","year":"2000","journal-title":"Int. J. Mod. Phys."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"J\u0119drzejewski, A., Marcjasz, G., Nail, P.R., and Sznajd-Weron, K. (2018). Think then act or act then think?. PLoS ONE, 13.","DOI":"10.1371\/journal.pone.0206166"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"063401","DOI":"10.1088\/1742-5468\/aac14a","article-title":"Consensus time in a voter model with concealed and publicly expressed opinions","volume":"6","author":"Gastner","year":"2018","journal-title":"J. Stat. Mech."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"122795","DOI":"10.1016\/j.physa.2019.122795","article-title":"The impact of technologies in political campaigns","volume":"538","author":"Hoferer","year":"2020","journal-title":"Phys. A"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1057\/s41599-019-0222-0","article-title":"Universality of neutral models: Decision process in politics","volume":"5","author":"Tellier","year":"2019","journal-title":"Palgrave Commun."},{"key":"ref_9","first-page":"2","article-title":"Opinion dynamics and bounded confidence: Models, analysis, and simulation","volume":"5","author":"Hegselmann","year":"2002","journal-title":"J. Artif. Soc. Soc. Simul."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1142\/S0219525900000078","article-title":"Mixing beliefs among interacting agents","volume":"3","author":"Deffuant","year":"2000","journal-title":"Adv. Complex Syst."},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Noorazar, H. (2020). Recent advances in opinion propagation dynamics: A 2020 survey. arXiv.","DOI":"10.1140\/epjp\/s13360-020-00541-2"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1007\/s11633-019-1169-8","article-title":"Recent advances in the modelling and analysis of opinion dynamics on influence networks","volume":"16","author":"Anderson","year":"2019","journal-title":"Int. J. Autom. Comput."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.inffus.2019.09.006","article-title":"Opinion dynamics model based on cognitive dissonance: An agent-based simulation","volume":"56","author":"Li","year":"2019","journal-title":"Inf. Fusion"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.inffus.2021.04.010","article-title":"Multi-attribute group decision making with opinion dynamics based on social trust network","volume":"75","author":"Li","year":"2021","journal-title":"Inf. Fusion"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.inffus.2020.08.009","article-title":"An active opinion dynamics model: The gap between the voting result and group opinion","volume":"65","author":"Jiao","year":"2021","journal-title":"Inf. Fusion"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"127095","DOI":"10.1016\/j.physa.2022.127095","article-title":"Adapted Deffuant\u2013Weisbuch model with implicit and explicit opinions","volume":"596","author":"Luo","year":"2022","journal-title":"Phys. A"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1134\/S2070048220020088","article-title":"Modeling political preferences of russian users exemplified by the social network Vkontakte","volume":"12","author":"Kozitsin","year":"2020","journal-title":"Math. Models Comput."},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Okawa, M., and Iwata, T. (2022). Predicting opinion dynamics via sociologically-informed neural networks. arXiv.","DOI":"10.1145\/3534678.3539228"},{"key":"ref_19","first-page":"3117","article-title":"Human behavior prediction based on opinions using machine learning techniques","volume":"8","author":"Sanjay","year":"2020","journal-title":"Int. J. Recent Technol. Eng."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"909439","DOI":"10.3389\/fpsyg.2022.909439","article-title":"A CNN-based framework for predicting public emotion and multi-level behaviors based on network public opinion","volume":"13","author":"Lin","year":"2022","journal-title":"Front. Psychol."},{"key":"ref_21","first-page":"870","article-title":"Human behavior prediction and analysis using machine learning\u2014A review","volume":"12","author":"Gulhane","year":"2021","journal-title":"Turk. J. Comput. Math. Educ."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"102031","DOI":"10.1016\/j.ipm.2019.03.010","article-title":"Neural opinion dynamics model for the prediction of user-level stance dynamics","volume":"57","author":"Zhu","year":"2020","journal-title":"Inf. Process. Manag."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"33203","DOI":"10.1109\/ACCESS.2021.3059821","article-title":"The longest month: Analyzing COVID-19 vaccination opinions dynamics from tweets in the month following the first vaccine announcement","volume":"9","author":"Cotfas","year":"2021","journal-title":"IEEE Access"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"113132","DOI":"10.1016\/j.eswa.2019.113132","article-title":"A new approach to solve opinion dynamics on complex networks","volume":"145","author":"Wang","year":"2020","journal-title":"Expert Syst. Appl."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"127662","DOI":"10.1016\/j.physa.2022.127662","article-title":"An agent-based model of opinion dynamics with attitude-hiding behaviors","volume":"603","author":"Zhu","year":"2022","journal-title":"Phys. A"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1016\/j.chb.2019.08.026","article-title":"Staying silent and speaking out in online comment sections: The influence of spiral of silence and corrective action in reaction to news","volume":"102","author":"Duncan","year":"2020","journal-title":"Comput. Human Behav."},{"key":"ref_27","unstructured":"De, A., Valera, I., Ganguly, N., Bhattacharya, S., and Rodriguez, M. (2016). Learning and forecasting opinion dynamics in social networks. Adv. Neural Inf. Process. Syst."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"083113","DOI":"10.1063\/1.4998736","article-title":"Analysis and application of opinion model with multiple topic interactions","volume":"27","author":"Xiong","year":"2017","journal-title":"Chaos Interdiscip. J. Nonlinear Sci."},{"key":"ref_29","first-page":"3804","article-title":"Social recommendation with evolutionary opinion dynamics","volume":"50","author":"Xiong","year":"2018","journal-title":"IEEE Trans. Syst. Man Cybern. Syst."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1016\/j.cnsns.2016.09.015","article-title":"Modeling and predicting opinion formation with trust propagation in online social networks","volume":"44","author":"Xiong","year":"2017","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Johnson, K.L., and Carnegie, N.B. (2021, January 22\u201326). Development of a Genetic Algorithm for Estimation for a DeGroot Opinion Diffusion Model. Proceedings of the 2021 IEEE International Conference on Pervasive Computing and Communications Workshops and Other Affiliated Events (PerCom Workshops), Kassel, Germany.","DOI":"10.1109\/PerComWorkshops51409.2021.9430976"},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Johnson, K.L., and Carnegie, N.B. (2022). Calibration of an adaptive genetic algorithm for modeling opinion diffusion. Algorithms, 15.","DOI":"10.3390\/a15020045"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"5543","DOI":"10.1038\/s41598-022-09468-3","article-title":"A general framework to link theory and empirics in opinion formation models","volume":"12","author":"Kozitsin","year":"2022","journal-title":"Sci. Rep."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1080\/0022250X.2020.1835894","article-title":"Formal models of opinion formation and their application to real data: Evidence from online social networks","volume":"46","author":"Kozitsin","year":"2020","journal-title":"J. Math. Sociol."},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Kozitsin, I.V. (2021). Opinion dynamics of online social network users: A micro-level analysis. J. Math. Sociol.","DOI":"10.1080\/0022250X.2021.1956917"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"3259","DOI":"10.1007\/s40747-021-00532-5","article-title":"Big data-drive agent-based modeling of online polarized opinions","volume":"7","author":"Lu","year":"2021","journal-title":"Complex Intell. Syst."},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Monti, C., De Francisci Morales, G., and Bonchi, F. (2020, January 6\u201310). Learning opinion dynamics from social traces. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, New York, NY, USA.","DOI":"10.1145\/3394486.3403119"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3364217","article-title":"An integrated method for simultaneous calibration and parameter selection in computer models","volume":"30","author":"Yuan","year":"2020","journal-title":"ACM Trans. Modeling Comput. Simul."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1007\/s10458-021-09528-4","article-title":"Automatic calibration of dynamic and heterogeneous parameters in agent-based models","volume":"35","author":"Kim","year":"2021","journal-title":"Auton. Agent. Multi-Agent Syst."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"6946370","DOI":"10.1155\/2020\/6946370","article-title":"Validation and calibration of an agent-based model: A surrogate approach","volume":"2020","author":"Zhang","year":"2020","journal-title":"Discret. Dyn. Nat. Soc."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"55284","DOI":"10.1109\/ACCESS.2021.3070071","article-title":"Evolutionary multiobjective optimization for automatic agent-based model calibration: A comparative study","volume":"9","author":"Moya","year":"2021","journal-title":"IEEE Access"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1016\/j.apenergy.2017.08.220","article-title":"A simultaneous calibration and parameter ranking method for building energy models","volume":"206","author":"Yuan","year":"2017","journal-title":"Appl. Energy"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2699713","article-title":"Calibration, validation, and prediction in random simulation models: Gaussian process metamodels and a bayesian integrated solution","volume":"25","author":"Jun","year":"2015","journal-title":"ACM Trans. Modeling Comput. Simul."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1109\/TASE.2012.2199486","article-title":"Calibration of stochastic computer models using stochastic approximation methods","volume":"10","author":"Jun","year":"2013","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Zhang, Z., and Lu, F. (2020). Cluster prediction for opinion dynamics from partial observations. arXiv.","DOI":"10.1109\/TSIPN.2020.3046992"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.inffus.2017.11.009","article-title":"A survey on the fusion process in opinion dynamics","volume":"43","author":"Dong","year":"2018","journal-title":"Inf. Fusion"},{"key":"ref_47","unstructured":"Jazwinski, A.H. (2007). Stochastic Processes and Filtering Theory, Courier Corporation."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"10143","DOI":"10.1029\/94JC00572","article-title":"Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics","volume":"99","author":"Evensen","year":"1994","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_49","doi-asserted-by":"crossref","unstructured":"Van Trees, H.L., and Bell, K.L. (2007). A tutorial on particle filters for online nonlinear\/nongaussian Bayesian tracking. Bayesian Bounds for Parameter Estimation and Nonlinear Filtering\/Tracking, IEEE.","DOI":"10.1109\/9780470544198"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3301502","article-title":"A data assimilation framework for discrete event simulations","volume":"29","author":"Hu","year":"2019","journal-title":"ACM Trans. Modeling Comput. Simul."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"1027","DOI":"10.1177\/0037549718798466","article-title":"A particle filter-based data assimilation framework for discrete event simulations","volume":"95","author":"Xie","year":"2019","journal-title":"SIMULATION Trans. Soc. Modeling Simul. Int."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1186\/s40854-020-00211-3","article-title":"Opinion dynamics in finance and business: A literature review and research opportunities","volume":"6","author":"Zha","year":"2020","journal-title":"Financ. Innov."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"856","DOI":"10.1177\/000312249906400606","article-title":"Choice shift and group polarization","volume":"64","author":"Friedkin","year":"1999","journal-title":"Am. Sociol. Rev."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1080\/0022250X.1990.9990069","article-title":"Social influence and opinions","volume":"15","author":"Friedkin","year":"1990","journal-title":"J. Math. Sociol."}],"container-title":["Entropy"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1099-4300\/24\/8\/1112\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,3]],"date-time":"2024-08-03T20:03:40Z","timestamp":1722715420000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1099-4300\/24\/8\/1112"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,8,12]]},"references-count":54,"journal-issue":{"issue":"8","published-online":{"date-parts":[[2022,8]]}},"alternative-id":["e24081112"],"URL":"https:\/\/doi.org\/10.3390\/e24081112","relation":{},"ISSN":["1099-4300"],"issn-type":[{"type":"electronic","value":"1099-4300"}],"subject":[],"published":{"date-parts":[[2022,8,12]]}}}