{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T20:57:40Z","timestamp":1722977860295},"reference-count":60,"publisher":"MDPI AG","issue":"5","license":[{"start":{"date-parts":[[2022,4,19]],"date-time":"2022-04-19T00:00:00Z","timestamp":1650326400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100003069","name":"Instituto Polit\u00e9cnico Nacional","doi-asserted-by":"publisher","award":["20220415"],"id":[{"id":"10.13039\/501100003069","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Entropy"],"abstract":"Decision trees are decision support data mining tools that create, as the name suggests, a tree-like model. The classical C4.5 decision tree, based on the Shannon entropy, is a simple algorithm to calculate the gain ratio and then split the attributes based on this entropy measure. Tsallis and Renyi entropies (instead of Shannon) can be employed to generate a decision tree with better results. In practice, the entropic index parameter of these entropies is tuned to outperform the classical decision trees. However, this process is carried out by testing a range of values for a given database, which is time-consuming and unfeasible for massive data. This paper introduces a decision tree based on a two-parameter fractional Tsallis entropy. We propose a constructionist approach to the representation of databases as complex networks that enable us an efficient computation of the parameters of this entropy using the box-covering algorithm and renormalization of the complex network. The experimental results support the conclusion that the two-parameter fractional Tsallis entropy is a more sensitive measure than parametric Renyi, Tsallis, and Gini index precedents for a decision tree classifier.<\/jats:p>","DOI":"10.3390\/e24050572","type":"journal-article","created":{"date-parts":[[2022,4,20]],"date-time":"2022-04-20T02:07:26Z","timestamp":1650420446000},"page":"572","source":"Crossref","is-referenced-by-count":6,"title":["A Two-Parameter Fractional Tsallis Decision Tree"],"prefix":"10.3390","volume":"24","author":[{"given":"Jazm\u00edn S.","family":"De la Cruz-Garc\u00eda","sequence":"first","affiliation":[{"name":"SEPI-UPIICSA, Instituto Polit\u00e9cnico Nacional, Mexico City C.P. 08400, Mexico"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7004-1794","authenticated-orcid":false,"given":"Juan","family":"Bory-Reyes","sequence":"additional","affiliation":[{"name":"SEPI-ESIME-ZACATENCO, Instituto Polit\u00e9cnico Nacional, Mexico City C.P. 07738, Mexico"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6782-9847","authenticated-orcid":false,"given":"Aldo","family":"Ramirez-Arellano","sequence":"additional","affiliation":[{"name":"SEPI-UPIICSA, Instituto Polit\u00e9cnico Nacional, Mexico City C.P. 08400, Mexico"}]}],"member":"1968","published-online":{"date-parts":[[2022,4,19]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1002\/j.1538-7305.1948.tb01338.x","article-title":"A mathematical theory of communication","volume":"27","author":"Shannon","year":"1948","journal-title":"Bell Syst. Tech. J."},{"key":"ref_2","unstructured":"R\u00e9nyi, A. (1961). On measures of entropy and information. Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, The Regents of the University of California, University of California Press."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"479","DOI":"10.1007\/BF01016429","article-title":"Possible generalization of Boltzmann-Gibbs statistics","volume":"52","author":"Tsallis","year":"1988","journal-title":"J. Stat. Phys."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"326","DOI":"10.1016\/S0375-9601(96)00832-8","article-title":"A note on the q-deformation-theoretic aspect of the generalized entropies in nonextensive physics","volume":"224","author":"Abe","year":"1997","journal-title":"Phys. Lett. A"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"4147","DOI":"10.1103\/PhysRevE.58.4147","article-title":"q calculus and entropy in nonextensive statistical physics","volume":"58","author":"Johal","year":"1998","journal-title":"Phys. Rev. E"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"310","DOI":"10.1016\/S0378-4371(01)00680-X","article-title":"q-Deformed structures and nonextensive-statistics: A comparative study","volume":"305","author":"Lavagno","year":"2002","journal-title":"Phys. A Stat. Mech. Appl."},{"key":"ref_7","first-page":"193","article-title":"On q-definite integrals","volume":"41","author":"Jackson","year":"1910","journal-title":"Q. J. Pure Appl. Math."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1016\/j.physa.2018.10.045","article-title":"A new information dimension of complex network based on R\u00e9nyi entropy","volume":"516","author":"Duan","year":"2019","journal-title":"Phys. A Stat. Mech. Appl."},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., and Zurada, J.M. (2008). Comparison of Shannon, Renyi and Tsallis Entropy Used in Decision Trees. Artificial Intelligence and Soft Computing\u2014ICAISC 2008, Springer.","DOI":"10.1007\/978-3-540-69731-2"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"1","DOI":"10.4018\/IJDWM.2018010101","article-title":"Statistical Entropy Measures in C4.5 Trees","volume":"14","year":"2018","journal-title":"Int. J. Data Warehous. Min."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"971","DOI":"10.12693\/APhysPolA.129.971","article-title":"Entropy Based Trees to Support Decision Making for Customer Churn Management","volume":"129","author":"Gajowniczek","year":"2016","journal-title":"Acta Phys. Pol. A"},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Lima, C.F.L., de Assis, F.M., and Cleonilson Prot\u00e1sio, C.P. (2010, January 9\u201315). Decision Tree Based on Shannon, R\u00e9nyi and Tsallis Entropies for Intrusion Tolerant Systems. Proceedings of the 2010 Fifth International Conference on Internet Monitoring and Protection, Barcelona, Spain.","DOI":"10.1109\/ICIMP.2010.23"},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Wang, Y., Song, C., and Xia, S.T. (2016, January 24\u201329). Improving decision trees by Tsallis Entropy Information Metric method. Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada.","DOI":"10.1109\/IJCNN.2016.7727821"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1016\/j.knosys.2016.12.021","article-title":"A less-greedy two-term Tsallis Entropy Information Metric approach for decision tree classification","volume":"120","author":"Wang","year":"2017","journal-title":"Knowl.-Based Syst."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Sharma, S., and Bassi, I. (2019, January 26\u201328). Efficacy of Tsallis Entropy in Clustering Categorical Data. Proceedings of the 2019 IEEE Bombay Section Signature Conference (IBSSC), Mumbai, India.","DOI":"10.1109\/IBSSC47189.2019.8973057"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"2643","DOI":"10.1016\/j.asoc.2012.11.022","article-title":"A novel ant-based clustering algorithm using Renyi entropy","volume":"13","author":"Zhang","year":"2013","journal-title":"Appl. Soft Comput."},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Wang, Y., and Xia, S.T. (2017, January 5\u20139). Unifying attribute splitting criteria of decision trees by Tsallis entropy. Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA.","DOI":"10.1109\/ICASSP.2017.7952608"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"012001","DOI":"10.1088\/1742-6596\/201\/1\/012001","article-title":"Non-additive entropy and nonextensive statistical mechanics \u2013 Some central concepts and recent applications","volume":"201","author":"Tsallis","year":"2010","journal-title":"J. Phys. Conf. Ser."},{"key":"ref_19","unstructured":"Tsallis, C. (2009). Introduction to Non-Extensive Statistical Mechanics: Approaching a Complex World, Springer Science & Business Media."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"109590","DOI":"10.1016\/j.chaos.2019.109590","article-title":"A box-covering Tsallis information dimension and non-extensive property of complex networks","volume":"132","year":"2020","journal-title":"Chaos Solitons Fractals"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"093125","DOI":"10.1063\/5.0018268","article-title":"Fractional information dimensions of complex networks","volume":"30","year":"2020","journal-title":"Chaos Interdiscip. J. Nonlinear Sci."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"111113","DOI":"10.1016\/j.chaos.2021.111113","article-title":"Two-parameter fractional Tsallis information dimensions of complex networks","volume":"150","year":"2021","journal-title":"Chaos Solitons Fractals"},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Ram\u00edrez-Reyes, A., Hern\u00e1ndez-Montoya, A.R., Herrera-Corral, G., and Dom\u00ednguez-Jim\u00e9nez, I. (2016). Determining the Entropic Index q of Tsallis Entropy in Images through Redundancy. Entropy, 18.","DOI":"10.3390\/e18080299"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Chen, X., Zhou, J., Liao, Z., Liu, S., and Zhang, Y. (2020). A Novel Method to Rank Influential Nodes in Complex Networks Based on Tsallis Entropy. Entropy, 22.","DOI":"10.3390\/e22080848"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1650118","DOI":"10.1142\/S0129183116501187","article-title":"A new structure entropy of complex networks based on non-extensive statistical mechanics","volume":"27","author":"Zhang","year":"2016","journal-title":"Int. J. Mod. Phys. C"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"785","DOI":"10.1093\/imamat\/hxm039","article-title":"Lambert function and a new non-extensive form of entropy","volume":"72","author":"Shafee","year":"2007","journal-title":"IMA J. Appl. Math."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"2516","DOI":"10.1016\/j.physleta.2009.05.026","article-title":"Entropies based on fractional calculus","volume":"373","author":"Ubriaco","year":"2009","journal-title":"Phys. Lett. A"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"4017","DOI":"10.1016\/j.physleta.2009.08.064","article-title":"A simple mathematical model for anomalous diffusion via Fisher\u2019s information theory","volume":"373","author":"Ubriaco","year":"2009","journal-title":"Phys. Lett. A"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"9172","DOI":"10.1016\/j.ijleo.2016.06.119","article-title":"Fractional order entropy: New perspectives","volume":"127","author":"Karci","year":"2016","journal-title":"Optik"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/j.ijleo.2018.05.022","article-title":"Notes on the published article \u201cFractional order entropy: New perspectives\u201d by Ali KARCI, Optik-International Journal for Light and Electron Optics, Volume 127, Issue 20, October 2016, Pages 9172\u20139177","volume":"171","author":"Karci","year":"2018","journal-title":"Optik"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"460364","DOI":"10.1155\/2014\/460364","article-title":"A Fractional Entropy in Fractal Phase Space: Properties and Characterization","volume":"2014","author":"Radhakrishnan","year":"2014","journal-title":"Int. J. Stat. Mech."},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Ferreira, R.A.C., and Tenreiro Machado, J. (2019). An Entropy Formulation Based on the Generalized Liouville Fractional Derivative. Entropy, 21.","DOI":"10.3390\/e21070638"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1007\/s11071-010-9724-4","article-title":"Entropy analysis of integer and fractional dynamical systems","volume":"62","author":"Machado","year":"2010","journal-title":"Nonlinear Dyn."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"2350","DOI":"10.3390\/e16042350","article-title":"Fractional order generalized information","volume":"16","author":"Machado","year":"2014","journal-title":"Entropy"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"220","DOI":"10.3390\/e5020220","article-title":"Extensive Generalization of Statistical Mechanics Based on Incomplete Information Theory","volume":"5","author":"Wang","year":"2003","journal-title":"Entropy"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"1431","DOI":"10.1016\/S0960-0779(00)00113-2","article-title":"Incomplete statistics: Nonextensive generalizations of statistical mechanics","volume":"12","author":"Wang","year":"2001","journal-title":"Chaos Solitons Fractals"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1140\/epjb\/e2009-00161-0","article-title":"Maximum entropy principle and power-law tailed distributions","volume":"70","author":"Kaniadakis","year":"2009","journal-title":"Eur. Phys. J. B"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1080\/00107514.2014.900977","article-title":"An introduction to nonadditive entropies and a thermostatistical approach to inanimate and living matter","volume":"55","author":"Tsallis","year":"2014","journal-title":"Contemp. Phys."},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Kapitaniak, T., Mohammadi, S.A., Mekhilef, S., Alsaadi, F.E., Hayat, T., and Pham, V.T. (2018). A New Chaotic System with Stable Equilibrium: Entropy Analysis, Parameter Estimation, and Circuit Design. Entropy, 20.","DOI":"10.3390\/e20090670"},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Jalab, H.A., Subramaniam, T., Ibrahim, R.W., Kahtan, H., and Noor, N.F.M. (2019). New Texture Descriptor Based on Modified Fractional Entropy for Digital Image Splicing Forgery Detection. Entropy, 21.","DOI":"10.3390\/e21040371"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1186\/s13661-016-0602-y","article-title":"Entropy solution of fractional dynamic cloud computing system associated with finite boundary condition","volume":"2016","author":"Ibrahim","year":"2016","journal-title":"Bound. Value Probl."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"035220","DOI":"10.1088\/1402-4896\/ab46c9","article-title":"Fractional symbolic network entropy analysis for the fractional-order chaotic systems","volume":"95","author":"He","year":"2020","journal-title":"Phys. Scr."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1140\/epjp\/i2019-12554-9","article-title":"Fractional R\u00e9nyi entropy","volume":"134","author":"Machado","year":"2019","journal-title":"Eur. Phys. J. Plus"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"495","DOI":"10.1080\/00107510902823517","article-title":"Generalized information and entropy measures in physics","volume":"50","author":"Beck","year":"2009","journal-title":"Contemp. Phys."},{"key":"ref_45","unstructured":"Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers Inc.. [3rd ed.]."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1080\/00461520.2018.1469411","article-title":"Complex Systems Research in Educational Psychology: Aligning Theory and Method","volume":"53","author":"Hilpert","year":"2018","journal-title":"Educ. Psychol."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"629","DOI":"10.1016\/j.tics.2016.06.003","article-title":"Local Patterns to Global Architectures: Influences of Network Topology on Human Learning","volume":"20","author":"Karuza","year":"2016","journal-title":"Trends Cogn. Sci."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"103634","DOI":"10.1016\/j.compedu.2019.103634","article-title":"Students learning pathways in higher blended education: An analysis of complex networks perspective","volume":"141","year":"2019","journal-title":"Comput. Educ."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"1750007","DOI":"10.1142\/S0218348X17500074","article-title":"An Approach to Compute Fractal Dimension of Color Images","volume":"25","author":"Zhao","year":"2017","journal-title":"Fractals"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1016\/j.ins.2019.01.040","article-title":"Linguistic data mining with complex networks: A stylometric-oriented approach","volume":"482","author":"Stanisz","year":"2019","journal-title":"Inf. Sci."},{"key":"ref_51","doi-asserted-by":"crossref","unstructured":"RamirezArellano, A. (2020). Classification of Literary Works: Fractality and Complexity of the Narrative, Essay, and Research Article. Entropy, 22.","DOI":"10.3390\/e22080904"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"2637","DOI":"10.1016\/j.physa.2008.01.015","article-title":"What is a complex graph?","volume":"387","author":"Kim","year":"2008","journal-title":"Phys. A Stat. Mech. Appl."},{"key":"ref_53","unstructured":"van Steen, M. (2010). Graph Theory and Complex Networks: An Introduction, Cambridge University Press."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"P03006","DOI":"10.1088\/1742-5468\/2007\/03\/P03006","article-title":"How to calculate the fractal dimension of a complex network: The box covering algorithm","volume":"2007","author":"Song","year":"2007","journal-title":"J. Stat. Mech. Theory Exp."},{"key":"ref_55","unstructured":"Dua, D., and Graff, C. (2022, February 22). UCI Machine Learning Repository. Available online: https:\/\/archive.ics.uci.edu\/ml\/index.php."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"564","DOI":"10.1007\/3-540-44795-4_48","article-title":"Proportional k-Interval Discretization for Naive-Bayes Classifiers","volume":"Volume 2167","author":"Yang","year":"2001","journal-title":"European Conference on Machine Learning (ECML 2001)"},{"key":"ref_57","first-page":"1","article-title":"Statistical Comparisons of Classifiers over Multiple Data Sets","volume":"7","year":"2006","journal-title":"J. Mach. Learn. Res."},{"key":"ref_58","unstructured":"Sprent, P., and Smeeton, N.C. (2001). Applied Nonparametric Statistical Methods, Chapman & Hall\/CRC. [3rd ed.]. Texts in Statistical Science."},{"key":"ref_59","unstructured":"Montgomery, D.C., and Runger, G.C. (2003). Applied Statistics and Probability for Engineers, John Wiley & Sons."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1016\/S0960-0779(01)00019-4","article-title":"Entropic nonextensivity: A possible measure of complexity","volume":"13","author":"Tsallis","year":"2002","journal-title":"Chaos Solitons Fractals"}],"container-title":["Entropy"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1099-4300\/24\/5\/572\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,28]],"date-time":"2024-07-28T16:18:51Z","timestamp":1722183531000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1099-4300\/24\/5\/572"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,4,19]]},"references-count":60,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2022,5]]}},"alternative-id":["e24050572"],"URL":"https:\/\/doi.org\/10.3390\/e24050572","relation":{},"ISSN":["1099-4300"],"issn-type":[{"value":"1099-4300","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,4,19]]}}}