{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:55:30Z","timestamp":1740149730087,"version":"3.37.3"},"reference-count":75,"publisher":"MDPI AG","issue":"10","license":[{"start":{"date-parts":[[2018,10,19]],"date-time":"2018-10-19T00:00:00Z","timestamp":1539907200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["71671193; 71371020"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Entropy"],"abstract":"By introducing net entropy into a stock network, this paper focuses on investigating the impact of network entropy on market returns and trading in the Chinese Growth Enterprise Market (GEM). In this paper, indices of Wu structure entropy (WSE) and SD structure entropy (SDSE) are considered as indicators of network heterogeneity to present market diversification. A series of dynamic financial networks consisting of 1066 daily nets is constructed by applying the dynamic conditional correlation multivariate GARCH (DCC-MV-GARCH) model with a threshold adjustment. Then, we evaluate the quantitative relationships between network entropy indices and market trading-variables and their bilateral information spillover effects by applying the bivariate EGARCH model. There are two main findings in the paper. Firstly, the evidence significantly ensures that both market returns and trading volumes associate negatively with the network entropy indices, which indicates that stock heterogeneity, which is negative with the value of network entropy indices by definition, can help to improve market returns and increase market trading volumes. Secondly, results show significant information transmission between the indicators of network entropy and stock market trading variables.<\/jats:p>","DOI":"10.3390\/e20100805","type":"journal-article","created":{"date-parts":[[2018,10,19]],"date-time":"2018-10-19T14:08:02Z","timestamp":1539958082000},"page":"805","source":"Crossref","is-referenced-by-count":9,"title":["Stock Net Entropy: Evidence from the Chinese Growth Enterprise Market"],"prefix":"10.3390","volume":"20","author":[{"given":"Qiuna","family":"Lv","sequence":"first","affiliation":[{"name":"School of Economics and Management, Beihang University, Beijing 100083, China"}]},{"given":"Liyan","family":"Han","sequence":"additional","affiliation":[{"name":"School of Economics and Management, Beihang University, Beijing 100083, China"}]},{"given":"Yipeng","family":"Wan","sequence":"additional","affiliation":[{"name":"Math Club Center, Acalanes High School, Lafayette, CA 94549, USA"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0193-6735","authenticated-orcid":false,"given":"Libo","family":"Yin","sequence":"additional","affiliation":[{"name":"School of Finance, Central University of Finance and Economics, Beijing 100081, China"}]}],"member":"1968","published-online":{"date-parts":[[2018,10,19]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1016\/j.jbankfin.2015.02.007","article-title":"Economic links and credit spreads","volume":"55","author":"Signori","year":"2015","journal-title":"J. Bank. Financ."},{"key":"ref_2","doi-asserted-by":"crossref","unstructured":"Liu, A., Paddrik, M., Yang, S.Y., and Zhang, X. (2017). Interbank contagion: An agent-based model approach to endogenously formed networks. J. Bank. Financ.","DOI":"10.2139\/ssrn.2888562"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/s100510050929","article-title":"Hierarchical structure in financial markets","volume":"11","author":"Mantegna","year":"1999","journal-title":"Eur. Phys. J. B"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"372","DOI":"10.1088\/1469-7688\/1\/3\/308","article-title":"Non-random topology of stock markets","volume":"1","author":"Vandewalle","year":"2001","journal-title":"Quant. Financ."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1080\/713665554","article-title":"High-frequency cross-correlation in a set of stocks","volume":"1","author":"Bonanno","year":"2001","journal-title":"Quant. Financ."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1016\/j.cpc.2007.02.047","article-title":"Complex networks in a stock market","volume":"177","author":"Lee","year":"2007","journal-title":"Comput. Phys. Commun."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"659","DOI":"10.1016\/j.jempfin.2010.04.008","article-title":"A network perspective of the stock market","volume":"17","author":"Chi","year":"2010","journal-title":"J. Empir. Financ."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"376","DOI":"10.1016\/j.physa.2013.08.053","article-title":"Stock network stability in times of crisis","volume":"393","author":"Heiberger","year":"2014","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1007\/s10614-015-9481-z","article-title":"Analysis of correlation based networks representing dax 30 stock price returns","volume":"47","author":"Birch","year":"2016","journal-title":"Comput. Econ."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1016\/j.econmod.2015.02.028","article-title":"Multiscale analysis of foreign exchange order flows and technical trading profitability","volume":"47","author":"Gradojevic","year":"2015","journal-title":"Econ. Model."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.physa.2016.08.032","article-title":"The predictive power of local properties of financial networks","volume":"466","author":"Caraiani","year":"2017","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"4147","DOI":"10.1016\/j.physa.2012.03.038","article-title":"Stock market networks: The dynamic conditional correlation approach","volume":"391","year":"2012","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.physa.2016.03.034","article-title":"A financial network perspective of financial institutions\u2019 systemic risk contributions","volume":"456","author":"Huang","year":"2016","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"1341","DOI":"10.1016\/j.jimonfin.2011.07.004","article-title":"And latin american stock market linkages","volume":"30","author":"Lahrech","year":"2011","journal-title":"J. Int. Money Financ."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Long, H., Zhang, J., and Tang, N. (2017). Does network topology influence systemic risk contribution? A perspective from the industry indices in chinese stock market. PLoS ONE, 12.","DOI":"10.1371\/journal.pone.0180382"},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Qiao, H., Yue, X., and Ying, L. (2016). Can network linkage effects determine return? Evidence from chinese stock market. PLoS ONE, 11.","DOI":"10.1371\/journal.pone.0156784"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"779","DOI":"10.3846\/16111699.2017.1341849","article-title":"Trend analysis of global stock market linkage based on a dynamic conditional correlation network","volume":"18","author":"Yin","year":"2017","journal-title":"J. Bus. Econ. Manag."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"455","DOI":"10.3390\/e16010455","article-title":"Dynamics of correlation structure in stock market","volume":"16","author":"Djauhari","year":"2014","journal-title":"Entropy"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.physa.2017.04.046","article-title":"Financial networks based on granger causality: A case study","volume":"482","author":"Papana","year":"2017","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"1435","DOI":"10.1016\/j.eneco.2012.06.021","article-title":"Measuring contagion between energy market and stock market during financial crisis: A copula approach","volume":"34","author":"Wen","year":"2012","journal-title":"Energy Econ."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/j.apenergy.2011.07.038","article-title":"How does oil price volatility affect non-energy commodity markets?","volume":"89","author":"Ji","year":"2012","journal-title":"Appl. Energy"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.intfin.2012.11.007","article-title":"Financialization, crisis and commodity correlation dynamics","volume":"24","author":"Silvennoinen","year":"2013","journal-title":"J. Int. Financ. Mark. Inst. Money"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"350","DOI":"10.1016\/j.eneco.2015.02.021","article-title":"Exogenous impacts on the links between energy and agricultural commodity markets","volume":"49","author":"Han","year":"2015","journal-title":"Energy Econ."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"502","DOI":"10.1016\/j.physa.2016.01.080","article-title":"How long is the memory of the us stock market?","volume":"451","author":"Ferreira","year":"2016","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"084102","DOI":"10.1103\/PhysRevLett.100.084102","article-title":"Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series","volume":"100","author":"Podobnik","year":"2008","journal-title":"Phys. Rev. Lett."},{"key":"ref_26","first-page":"1685","article-title":"Mosaic organization of DNA nucleotides","volume":"49","author":"Peng","year":"1994","journal-title":"Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1016\/j.physa.2013.08.071","article-title":"The predictive power of singular value decomposition entropy for stock market dynamics","volume":"393","author":"Caraiani","year":"2014","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.physa.2015.07.028","article-title":"Does the singular value decomposition entropy have predictive power for stock market?\u2014Evidence from the shenzhen stock market","volume":"439","author":"Gu","year":"2015","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.physa.2016.02.030","article-title":"How long the singular value decomposed entropy predicts the stock market?\u2014Evidence from the dow jones industrial average index","volume":"453","author":"Gu","year":"2016","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.physa.2017.07.022","article-title":"Predicting economic growth with stock networks","volume":"489","author":"Heiberger","year":"2018","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"3065","DOI":"10.1016\/j.jbankfin.2011.04.006","article-title":"The effects of loan portfolio concentration on brazilian banks\u2019 return and risk","volume":"35","author":"Tabak","year":"2011","journal-title":"J. Bank. Financ."},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Narayan, P.K., Phan, D.H.B., and Sharma, S.S. (2018). Does islamic stock sensitivity to oil prices have economic significance?. Pac.-Basin Financ. J.","DOI":"10.1016\/j.pacfin.2018.04.003"},{"key":"ref_33","first-page":"339","article-title":"Network structure entropy and its application to scale-free networks","volume":"24","author":"Tan","year":"2004","journal-title":"Syst. Eng.-Theory Pract."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"110513","DOI":"10.7498\/aps.60.110513","article-title":"A new network structure entropy based node difference and edge difference","volume":"60","author":"Cai","year":"2011","journal-title":"Acta Phys. Sin."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1063\/1.3067010","article-title":"The mathematical theory of communication","volume":"3","author":"Shannon","year":"1950","journal-title":"Phys. Today"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1007\/s10614-013-9381-z","article-title":"Timescale analysis with an entropy-based shift-invariant discrete wavelet transform","volume":"44","author":"Bekiros","year":"2014","journal-title":"Comput. Econ."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1080\/14697681003685548","article-title":"Directional entropy and tail uncertainty, with applications to financial hazard","volume":"11","author":"Bowden","year":"2011","journal-title":"Quant. Financ."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/S0304-4076(01)00118-X","article-title":"Connections between entropic and linear projections in asset pricing estimation","volume":"107","author":"Kitamura","year":"2002","journal-title":"J. Econom."},{"key":"ref_39","first-page":"85","article-title":"Using transfer entropy to measure information flows between financial markets","volume":"17","author":"Peter","year":"2013","journal-title":"Stud. Nonlinear Dyn. Econom."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"70","DOI":"10.3390\/e2020070","article-title":"Simple entropic derivation of a generalized black-scholes option pricing model","volume":"2","author":"Stutzer","year":"2000","journal-title":"Entropy"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"4909","DOI":"10.3390\/e15114909","article-title":"Applications of entropy in finance: A review","volume":"15","author":"Zhou","year":"2013","journal-title":"Entropy"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"493","DOI":"10.1016\/j.jmoneco.2012.04.002","article-title":"Ambiguity shifts and the 2007\u20132008 financial crisis","volume":"59","author":"Boyarchenko","year":"2012","journal-title":"J. Monet. Econ."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"792","DOI":"10.1016\/j.ejor.2004.01.031","article-title":"A measure of risk and a decision-making model based on expected utility and entropy","volume":"164","author":"Yang","year":"2005","journal-title":"Eur. J. Oper. Res."},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Zhou, R., Liu, X., Yu, M., and Huang, K. (2017). Properties of risk measures of generalized entropy in portfolio selection. Entropy, 19.","DOI":"10.3390\/e19120657"},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Gen\u00e7ay, R., and Gradojevic, N. (2017). The tale of two financial crises: An entropic perspective. Entropy, 19.","DOI":"10.3390\/e19060244"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1002\/for.2411","article-title":"Predicting systemic risk with entropic indicators","volume":"36","author":"Gradojevic","year":"2016","journal-title":"J. Forecast."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"2397","DOI":"10.3390\/e12122397","article-title":"Forecasting the stock market with linguistic rules generated from the minimize entropy principle and the cumulative probability distribution approaches","volume":"12","author":"Su","year":"2010","journal-title":"Entropy"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1007\/BF02477860","article-title":"Life, information theory, and topology","volume":"17","author":"Rashevsky","year":"1955","journal-title":"Bull. Math. Biophys."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1007\/BF02477836","article-title":"A note on the information content of graphs","volume":"18","author":"Trucco","year":"1956","journal-title":"Bull. Math. Biophys."},{"key":"ref_50","first-page":"533","article-title":"Entropy and the complexity of graphs: Iv. Entropy measures and graphical structure","volume":"30","author":"Mowshowitz","year":"1968","journal-title":"Bull. Math. Biol."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"045102","DOI":"10.1103\/PhysRevE.80.045102","article-title":"Entropy measures for networks: Toward an information theory of complex topologies","volume":"80","author":"Anand","year":"2009","journal-title":"Phys. Rev. E Stat. Nonlinear Soft Matter Phys."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1080\/00018730601170527","article-title":"Characterization of complex networks: A survey of measurements","volume":"56","author":"Costa","year":"2005","journal-title":"Adv. Phys."},{"key":"ref_53","doi-asserted-by":"crossref","unstructured":"Li, S., He, J., and Song, K. (2016). Network entropies of the chinese financial market. Entropy, 18.","DOI":"10.3390\/e18090331"},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"1080","DOI":"10.1016\/j.physa.2018.06.083","article-title":"Efficient construction of threshold networks of stock markets","volume":"509","author":"Xu","year":"2018","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Nie, C., and Song, F. (2018). Relationship between entropy and dimension of financial correlation-based network. Entropy, 20.","DOI":"10.3390\/e20030177"},{"key":"ref_56","doi-asserted-by":"crossref","unstructured":"Caraiani, P. (2018). Modeling the comovement of entropy between financial markets. Entropy, 20.","DOI":"10.3390\/e20060417"},{"key":"ref_57","doi-asserted-by":"crossref","unstructured":"Stutzer, M. (2018). The role of entropy in estimating financial network default impact. Entropy, 20.","DOI":"10.3390\/e20050369"},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"9340","DOI":"10.1038\/s41598-017-09475-9","article-title":"Analysis and evaluation of the entropy indices of a static network structure","volume":"7","author":"Cai","year":"2017","journal-title":"Sci. Rep."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.gfj.2012.01.001","article-title":"The bivariate garch approach to investigating the relation between stock returns, trading volume, and return volatility","volume":"23","author":"Chuang","year":"2012","journal-title":"Glob. Financ. J."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"896","DOI":"10.1016\/j.sbspro.2015.11.118","article-title":"The effect of return on equity (ROE) and return on investment (ROI) on trading volume","volume":"211","author":"Ichsani","year":"2015","journal-title":"Procedia Soc. Behav. Sci."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.frl.2017.06.006","article-title":"International stock return co-movements and trading activity","volume":"23","author":"Sheng","year":"2017","journal-title":"Financ. Res. Lett."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1016\/j.econmod.2017.03.019","article-title":"Can volume predict bitcoin returns and volatility? A quantiles-based approach","volume":"64","author":"Balcilar","year":"2017","journal-title":"Econ. Model."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1198\/073500102288618487","article-title":"Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models","volume":"20","author":"Engle","year":"2002","journal-title":"J. Bus. Econ. Stat."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1016\/j.eneco.2014.03.004","article-title":"Dynamic spillovers among major energy and cereal commodity prices","volume":"43","author":"Mensi","year":"2014","journal-title":"Energy Econ."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"92","DOI":"10.1016\/j.physa.2016.05.019","article-title":"The dynamic correlation between policy uncertainty and stock market returns in China","volume":"461","author":"Yang","year":"2016","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"046130","DOI":"10.1103\/PhysRevE.68.046130","article-title":"Topology of correlation-based minimal spanning trees in real and model markets","volume":"68","author":"Bonanno","year":"2003","journal-title":"Phys. Rev. E"},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"10421","DOI":"10.1073\/pnas.0500298102","article-title":"A tool for filtering information in complex systems","volume":"102","author":"Tumminello","year":"2005","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_68","doi-asserted-by":"crossref","unstructured":"Barrat, A., Barthlemy, M., and Vespignani, A. (2008). Dynamical Processes on Complex Networks, Cambridge University Press.","DOI":"10.1017\/CBO9780511791383"},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"440","DOI":"10.1038\/30918","article-title":"Collectivedynamics of \u2019small-world\u2019 networks","volume":"393","author":"Watts","year":"1998","journal-title":"Nature"},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"2956","DOI":"10.1016\/j.physa.2009.03.028","article-title":"A network analysis of the chinese stock market","volume":"388","author":"Huang","year":"2009","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1016\/j.cpc.2007.02.037","article-title":"Characteristics of networks in financial markets","volume":"177","author":"Kim","year":"2007","journal-title":"Comput. Phys. Commun."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.physa.2008.09.028","article-title":"Quantifying price fluctuations in the brazilian stock market","volume":"388","author":"Tabak","year":"2009","journal-title":"Phys. A Stat. Mech. Its Appl."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1016\/j.intfin.2018.04.004","article-title":"Can economic policy uncertainty predict stock returns? Global evidence","volume":"55","author":"Phan","year":"2018","journal-title":"J. Int. Financ. Mark. Inst. Money"},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"791","DOI":"10.1093\/rfs\/hhu080","article-title":"Investor sentiment aligned: A powerful predictor of stock returns","volume":"28","author":"Huang","year":"2013","journal-title":"Rev. Financ. Stud."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1016\/j.eneco.2015.11.017","article-title":"Exogenous shocks and the spillover effects between uncertainty and oil price","volume":"54","author":"Li","year":"2016","journal-title":"Energy Econ."}],"container-title":["Entropy"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1099-4300\/20\/10\/805\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,13]],"date-time":"2024-06-13T04:25:52Z","timestamp":1718252752000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1099-4300\/20\/10\/805"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,10,19]]},"references-count":75,"journal-issue":{"issue":"10","published-online":{"date-parts":[[2018,10]]}},"alternative-id":["e20100805"],"URL":"https:\/\/doi.org\/10.3390\/e20100805","relation":{},"ISSN":["1099-4300"],"issn-type":[{"type":"electronic","value":"1099-4300"}],"subject":[],"published":{"date-parts":[[2018,10,19]]}}}