{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:55:42Z","timestamp":1740149742932,"version":"3.37.3"},"reference-count":32,"publisher":"MDPI AG","issue":"10","license":[{"start":{"date-parts":[[2018,9,25]],"date-time":"2018-09-25T00:00:00Z","timestamp":1537833600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["11502237, and 91441104"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Entropy"],"abstract":"A numerical investigation has been carried out to understand the mechanism of the rotation effect on bifurcation and dual solutions in natural convection within a horizontal annulus. A thermal immersed boundary-lattice Boltzmann method was used to resolve the annular flow domain covered by a Cartesian mesh. The Rayleigh number based on the gap width is fixed at 104. The rotation effect on the natural convection is analyzed by streamlines, isotherms, phase portrait and bifurcation diagram. Our results manifest the existence of three convection patterns in a horizontal annulus with rotating inner cylinder which affect the heat transfer in different ways, and the linear speed ( U i * ) determines the proportion of each convection. Comparison of average Nusselt number versus linear speed for the inner cylinder indicates the existence of the three different mechanisms which drive the convection in a rotation system. The convection pattern caused by rotation reduces the heat transfer efficiency. Our results in phase portraits also reveal the differences among different convection patterns.<\/jats:p>","DOI":"10.3390\/e20100733","type":"journal-article","created":{"date-parts":[[2018,9,25]],"date-time":"2018-09-25T15:12:26Z","timestamp":1537888346000},"page":"733","source":"Crossref","is-referenced-by-count":11,"title":["Study on Bifurcation and Dual Solutions in Natural Convection in a Horizontal Annulus with Rotating Inner Cylinder Using Thermal Immersed Boundary-Lattice Boltzmann Method"],"prefix":"10.3390","volume":"20","author":[{"given":"Yikun","family":"Wei","sequence":"first","affiliation":[{"name":"Faculty of Mechanical Engineering & Automation, Zhejiang Sci-Tech University, Hangzhou 310018, China"},{"name":"State-Province Joint Engineering Lab of Fluid Transmission System Technology, Hangzhou 310018, China"}]},{"given":"Zhengdao","family":"Wang","sequence":"additional","affiliation":[{"name":"Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China"}]},{"given":"Yuehong","family":"Qian","sequence":"additional","affiliation":[{"name":"School of Mathematical Sciences, Soochow University, Suzhou 215006, China"}]},{"given":"Wenjing","family":"Guo","sequence":"additional","affiliation":[{"name":"Basic Courses Department, Shandong University of Science and Technology, Taian 271019, China"}]}],"member":"1968","published-online":{"date-parts":[[2018,9,25]]},"reference":[{"key":"ref_1","unstructured":"Grigull, U., and Hauf, W. (1966, January 7\u201312). Natural convection in horizontal cylindrical annuli. Proceedings of the 3rd International Heat Transfer Conference, Chicago, IL, USA."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"310","DOI":"10.1115\/1.3580158","article-title":"Free convective flow patterns in cylindrical annuli","volume":"91","author":"Powe","year":"1969","journal-title":"J. Heat Transf."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"695","DOI":"10.1017\/S0022112076002012","article-title":"An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders","volume":"74","author":"Kuehn","year":"1976","journal-title":"J. Fluid Mech."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1559","DOI":"10.1016\/0017-9310(82)90034-5","article-title":"Natural convection between horizontal concentric cylinders with density inversion of water for low Rayleigh numbers","volume":"25","author":"Nguyen","year":"1982","journal-title":"Int. J. Heat Mass Transf."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1017\/S0022112098002948","article-title":"A numerical and experimental investigation of stability of natural convective flows within a horizontal annulus","volume":"381","author":"Dyko","year":"1999","journal-title":"J. Fluid Mech."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"3055","DOI":"10.1016\/S0017-9310(98)00051-9","article-title":"Natural convection in a narrow horizontal cylindrical annulus: Pr = 0.3","volume":"41","author":"Yoo","year":"1998","journal-title":"Int. J. Heat Mass Transf."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"3279","DOI":"10.1016\/S0017-9310(98)00384-6","article-title":"Prandtl number effect on bifurcation and dual solutions in natural convection in a horizontal annulus","volume":"42","author":"Yoo","year":"1999","journal-title":"Int. J. Heat Mass Transf."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"709","DOI":"10.1016\/S0017-9310(98)00197-5","article-title":"Transition and multiplicity of flows in natural convection in a narrow horizontal cylindrical annulus: Pr = 0.4","volume":"42","author":"Yoo","year":"1999","journal-title":"Int. J. Heat Mass Transf."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"3889","DOI":"10.1016\/j.ijheatmasstransfer.2004.04.002","article-title":"Stability of free convection in air-filled horizontal annuli: Influence of the radius ratio","volume":"47","author":"Petrone","year":"2004","journal-title":"Int. J. Heat Mass Transf."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"104107","DOI":"10.1063\/1.2364027","article-title":"Stability analysis of natural convective flows in horizontal annuli: Effects of the axial and radial aspect ratios","volume":"18","author":"Petrone","year":"2006","journal-title":"Phys. Fluids"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1016\/j.ijthermalsci.2014.11.020","article-title":"Eccentricity effect on bifurcation and dual solutions in transient natural convection in a horizontal annulus","volume":"89","author":"Luo","year":"2014","journal-title":"Int. J. Therm. Sci."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"591","DOI":"10.1016\/j.ijheatmasstransfer.2014.10.050","article-title":"Study of multiple steady solutions for the 2D natural convection in a concentric horizontal annulus with a constant heat flux wall using immersed boundary-lattice Boltzmann method","volume":"81","author":"Hu","year":"2015","journal-title":"Int. J. Heat Mass Transf."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.icheatmasstransfer.2017.10.015","article-title":"Partitioning effect on natural convection in a circular enclosure with an asymmetrically placed inclined plate","volume":"90","author":"Zhang","year":"2018","journal-title":"Int. Commun. Heat Mass Transf."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.compfluid.2017.07.003","article-title":"A novel two-dimensional coupled lattice Boltzmann model for incompressible flow in application of turbulence Rayleigh-Taylor instability","volume":"156","author":"Wei","year":"2017","journal-title":"Comput. Fluids"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.compfluid.2015.09.004","article-title":"Simulations of natural convection heat transfer in an enclosure at different Rayleigh number using lattice Boltzmann method","volume":"124","author":"Wei","year":"2016","journal-title":"Comput. Fluids"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1017\/S0022112007008038","article-title":"Onset of convection in a moderate aspect-ratio rotating cylinder: Eckhaus-Benjamin-Feir instability","volume":"590","author":"Lopez","year":"2007","journal-title":"J. Fluid Mech."},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Zhang, W., Wei, Y.K., Dou, H.-S., and Zhu, Z.C. (2018). Transient behaviors of mixed convection in a square enclosure with an inner impulsively rotating circular cylinder. Int. Commun. Heat Mass Transf., in press.","DOI":"10.1016\/j.icheatmasstransfer.2018.08.016"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"479","DOI":"10.1209\/0295-5075\/17\/6\/001","article-title":"Lattice BGK models for Navier-Stokes equation","volume":"17","author":"Qian","year":"1992","journal-title":"Europhys. Lett."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"033113","DOI":"10.1103\/PhysRevE.93.033113","article-title":"Lattice Boltzmann simulation of three-dimensional Rayleigh-Taylor instability","volume":"93","author":"Liang","year":"2016","journal-title":"Phys. Rev. E"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"033309","DOI":"10.1103\/PhysRevE.97.033309","article-title":"Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows","volume":"97","author":"Liang","year":"2018","journal-title":"Phys. Rev. E"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"602","DOI":"10.1016\/j.jcp.2003.10.013","article-title":"The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems","volume":"195","author":"Feng","year":"2004","journal-title":"J. Comput. Phys."},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Succi, S. (2001). The Lattice-Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press.","DOI":"10.1093\/oso\/9780198503989.001.0001"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1002\/fld.337","article-title":"A coupled lattice BGK model for the Boussinesq equations","volume":"39","author":"Guo","year":"2002","journal-title":"Int. J. Numer. Meth. Fluids"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.physleta.2006.01.060","article-title":"A momentum exchange-based immersed boundary-lattice boltzmann method for simulating incompressible viscous flows","volume":"354","author":"Niu","year":"2006","journal-title":"Phys. Lett. A"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1963","DOI":"10.1016\/j.jcp.2008.11.019","article-title":"Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications","volume":"228","author":"Wu","year":"2009","journal-title":"J. Comput. Phys."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1002\/fld.2023","article-title":"Simulation of incompressible viscous flows around moving objects by a variant of immersed boundary-lattice Boltzmann method","volume":"62","author":"Wu","year":"2010","journal-title":"Int. J. Numer. Meth. Fluids"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"5307","DOI":"10.1103\/PhysRevE.61.5307","article-title":"Gravity in lattice Boltzmann model","volume":"61","author":"Buick","year":"2000","journal-title":"Phys. Rev. E"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"2178","DOI":"10.1016\/j.camwa.2009.08.043","article-title":"Thermal boundary conditions for thermal lattice Boltzmann simulations","volume":"59","author":"Liu","year":"2010","journal-title":"Compt. Math. Appl."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"026701","DOI":"10.1103\/PhysRevE.79.026701","article-title":"Boundary slip from the immersed boundary lattice Boltzmann models","volume":"79","author":"Le","year":"2009","journal-title":"Phys. Rev. E"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"450","DOI":"10.1016\/j.ijheatmasstransfer.2017.08.004","article-title":"An iterative source correction based immersed boundary-latticeBoltzmann method for thermal flow simulations","volume":"115","author":"Wu","year":"2017","journal-title":"Int. J. Heat Mass Transf."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1016\/j.ijthermalsci.2014.11.020","article-title":"Radiation effects on bifurcation and dual solutions in transient natural convection in a horizontal annulus","volume":"89","author":"Luo","year":"2015","journal-title":"Int. J. Therm. Sci."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"053312","DOI":"10.1103\/PhysRevE.89.053312","article-title":"Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method","volume":"89","author":"Amiri","year":"2014","journal-title":"Phys. Rev. E"}],"container-title":["Entropy"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1099-4300\/20\/10\/733\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,12]],"date-time":"2024-06-12T19:29:24Z","timestamp":1718220564000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1099-4300\/20\/10\/733"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,9,25]]},"references-count":32,"journal-issue":{"issue":"10","published-online":{"date-parts":[[2018,10]]}},"alternative-id":["e20100733"],"URL":"https:\/\/doi.org\/10.3390\/e20100733","relation":{},"ISSN":["1099-4300"],"issn-type":[{"type":"electronic","value":"1099-4300"}],"subject":[],"published":{"date-parts":[[2018,9,25]]}}}