{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T14:55:30Z","timestamp":1740149730898,"version":"3.37.3"},"reference-count":36,"publisher":"MDPI AG","issue":"7","license":[{"start":{"date-parts":[[2018,6,21]],"date-time":"2018-06-21T00:00:00Z","timestamp":1529539200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Entropy"],"abstract":"This paper reviews results about discrete physics and non-commutative worlds and explores further the structure and consequences of constraints linking classical calculus and discrete calculus formulated via commutators. In particular, we review how the formalism of generalized non-commutative electromagnetism follows from a first order constraint and how, via the Kilmister equation, relationships with general relativity follow from a second order constraint. It is remarkable that a second order constraint, based on interlacing the commutative and non-commutative worlds, leads to an equivalent tensor equation at the pole of geodesic coordinates for general relativity.<\/jats:p>","DOI":"10.3390\/e20070483","type":"journal-article","created":{"date-parts":[[2018,6,22]],"date-time":"2018-06-22T06:46:21Z","timestamp":1529649981000},"page":"483","source":"Crossref","is-referenced-by-count":7,"title":["Non-Commutative Worlds and Classical Constraints"],"prefix":"10.3390","volume":"20","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-4135-8685","authenticated-orcid":false,"given":"Louis","family":"Kauffman","sequence":"first","affiliation":[{"name":"Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, 851 South Morgan Street, Chicago, IL 60607-7045, USA"},{"name":"Department of Mechanics and Mathematics, Novosibirsk State University, Novosibirsk 630090, Russia"}]}],"member":"1968","published-online":{"date-parts":[[2018,6,21]]},"reference":[{"key":"ref_1","unstructured":"Deakin, A.M., and Kauffman, L.H. (arXiv, 2018). Cosmological theories of the extra terms, arXiv."},{"key":"ref_2","unstructured":"Bowden, K.G. (1999). Where does Schroedinger\u2019s equation really come from?. Aspects II\u2014Proceedings of ANPA 20, ANPA."},{"key":"ref_3","unstructured":"Ford, A.D. (2011). Progress in constraints theory. Contexts\u2014Proceedings of ANPA 31, ANPA."},{"key":"ref_4","unstructured":"Kilmister, C. Letter to A. M. Deakin, Unpublished work, 2005."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Kauffman, L.H. (2017). Iterant algebra. Entropy, 19.","DOI":"10.3390\/e19070347"},{"key":"ref_6","unstructured":"Kauffman, L.H. (1985). Sign and Space. Religious Experience and Scientific Paradigms: Proceedings of the IASWR Conference 1982, Institute of Advanced Study of World Religions."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/0140-1750(87)90034-0","article-title":"Self-reference and recursive forms","volume":"10","author":"Kauffman","year":"1987","journal-title":"J. Soc. Biol. Struct."},{"key":"ref_8","unstructured":"Kauffman, L.H. (1987, January 23). Special relativity and a calculus of distinctions. Proceedings of the 9th Annual International Meeting of ANPA, Cambridge, UK."},{"key":"ref_9","unstructured":"Kauffman, L.H. (1987, January 26\u201328). Imaginary values in mathematical logic. Proceedings of the Seventeenth International Conference on Multiple Valued Logic, Boston, MA, USA."},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Kauffman, L. (1994). Knot Logic. Knots and Applications, World Scientific Publishing.","DOI":"10.1142\/9789812796202"},{"key":"ref_11","first-page":"313","article-title":"Biologic","volume":"304","author":"Kauffman","year":"2002","journal-title":"Gen. Theor. Phys."},{"key":"ref_12","unstructured":"Bell, J.L. (1998). A Primer of Infinitesimal Analysis, Cambridge University Press."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1443","DOI":"10.1007\/s10773-006-9201-5","article-title":"Glafka-2004: Non-commutative worlds","volume":"45","author":"Kauffman","year":"2006","journal-title":"Int. J. Theor. Phys."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1088\/1367-2630\/6\/1\/173","article-title":"Non-commutative worlds","volume":"6","author":"Kauffman","year":"2004","journal-title":"New J. Phys."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Fauser, B., Tolksdorf, J., and Zeidler, E. (2007). Differential geometry in non-commutative worlds. Quantum Gravity\u2014Mathematical Models and Experimental Bounds, Birkhauser.","DOI":"10.1007\/978-3-7643-7978-0"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1119\/1.16188","article-title":"Feynman\u2019s proof of the Maxwell Equations","volume":"58","author":"Dyson","year":"1990","journal-title":"Am. J. Phys."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/0003-4916(92)90362-P","article-title":"Relativistic generalization and extension to the non-Abelian gauge theory of Feynman\u2019s proof of the Maxwell equations","volume":"220","author":"Tanamira","year":"1992","journal-title":"Ann. Phys."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1098\/rspa.1996.0005","article-title":"Discrete Physics and the Derivation of Electromagnetism from the formalism of Quantum Mechanics","volume":"452","author":"Kauffman","year":"1996","journal-title":"Proc. R. Soc. Lond. A"},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Kauffman, L.H. (1991). Knots and Physics, World Scientific Publishing.","DOI":"10.1142\/9789812796226"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1063\/1.1503680","article-title":"Time imaginary value, paradox sign and space","volume":"627","author":"Kauffman","year":"2002","journal-title":"AIP Conf. Proc."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1016\/0375-9601(96)00436-7","article-title":"Discrete Physics and the Dirac Equation","volume":"218","author":"Kauffman","year":"1996","journal-title":"Phys. Lett. A"},{"key":"ref_22","first-page":"15","article-title":"Quantum electrodynamic birdtracks","volume":"41","author":"Kauffman","year":"1996","journal-title":"Twist. Newslett."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/S0167-2789(98)00049-9","article-title":"Noncommutativity and discrete physics","volume":"120","author":"Kauffman","year":"1998","journal-title":"J. Phys. D"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1080\/03081079808962067","article-title":"Space and time in discrete physics","volume":"27","author":"Kauffman","year":"1998","journal-title":"Int. J. Gen. Syst."},{"key":"ref_25","unstructured":"Kauffman, L.H. (1998, January 3\u20138). A non-commutative approach to discrete physics. Proceedings of the Annual International Meeting of the Alternative Natural Philosophy Association, Cambridge, UK."},{"key":"ref_26","unstructured":"Kauffman, L.H. (arXiv, 2003). Non-commutative calculus and discrete physics, arXiv."},{"key":"ref_27","unstructured":"Connes, A. (1990). Non-Commutative Geometry, Academic Press."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1016\/0370-2693(92)91561-M","article-title":"Quantum mechanics on a lattice and q-deformations","volume":"295B","author":"Dimakis","year":"1992","journal-title":"Phys. Lett."},{"key":"ref_29","unstructured":"Forgy, E.A. (2002). Differential Geometry in Computational Electromagnetics. [Ph.D. Thesis, University of Illinois Urbana-Champaign]."},{"key":"ref_30","unstructured":"M\u00fcller-Hoissen, F. (1996, January 1\u20137). Introduction to non-commutative geometry of commutative algebras and applications in physics. Proceedings of the 2nd Mexican School on Gravitation and Mathematical Physics, Tlaxcala, Mexico."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"901","DOI":"10.1023\/A:1026665220713","article-title":"Minimal coupling and Feynman\u2019s proof","volume":"38","author":"Montesinos","year":"1999","journal-title":"Int. J. Theor. Phys"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1119\/1.16921","article-title":"On Feynman\u2019s proof of the Maxwell Equations","volume":"60","author":"Hughes","year":"1992","journal-title":"Am. J. Phys."},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Amson, J.C., and Kauffman, L.H. (2014). Constraints theory brief. Scientific Essays in Honor of H. Pierre Noyes on the Occasion of His 90th Birthday, World Scientific Publishing.","DOI":"10.1142\/9055"},{"key":"ref_34","unstructured":"Eddington, A.S. (1965). The Mathematical Theory of Relativity, Cambridge University Press."},{"key":"ref_35","unstructured":"Dirac, P.A.M. (1975). General Theory of Relativity, Wiley & Sons."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Foster, J., and Nightingale, J.D. (1995). A Short Course in General Relativit, Springer.","DOI":"10.1007\/978-1-4757-3841-4"}],"container-title":["Entropy"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1099-4300\/20\/7\/483\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,11]],"date-time":"2024-06-11T09:23:12Z","timestamp":1718097792000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1099-4300\/20\/7\/483"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,6,21]]},"references-count":36,"journal-issue":{"issue":"7","published-online":{"date-parts":[[2018,7]]}},"alternative-id":["e20070483"],"URL":"https:\/\/doi.org\/10.3390\/e20070483","relation":{},"ISSN":["1099-4300"],"issn-type":[{"type":"electronic","value":"1099-4300"}],"subject":[],"published":{"date-parts":[[2018,6,21]]}}}