{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,9]],"date-time":"2025-04-09T17:12:11Z","timestamp":1744218731134,"version":"3.37.3"},"reference-count":40,"publisher":"MDPI AG","issue":"4","license":[{"start":{"date-parts":[[2018,3,23]],"date-time":"2018-03-23T00:00:00Z","timestamp":1521763200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Entropy"],"abstract":"This paper proposes a class of covariance estimators based on information divergences in heterogeneous environments. In particular, the problem of covariance estimation is reformulated on the Riemannian manifold of Hermitian positive-definite (HPD) matrices. The means associated with information divergences are derived and used as the estimators. Without resorting to the complete knowledge of the probability distribution of the sample data, the geometry of the Riemannian manifold of HPD matrices is considered in mean estimators. Moreover, the robustness of mean estimators is analyzed using the influence function. Simulation results indicate the robustness and superiority of an adaptive normalized matched filter with our proposed estimators compared with the existing alternatives.<\/jats:p>","DOI":"10.3390\/e20040219","type":"journal-article","created":{"date-parts":[[2018,3,28]],"date-time":"2018-03-28T03:37:17Z","timestamp":1522208237000},"page":"219","source":"Crossref","is-referenced-by-count":22,"title":["Robust Covariance Estimators Based on Information Divergences and Riemannian Manifold"],"prefix":"10.3390","volume":"20","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-7687-7720","authenticated-orcid":false,"given":"Xiaoqiang","family":"Hua","sequence":"first","affiliation":[{"name":"School of Electronic Science, National University of Defence Technology, Changsha 410073, China"}]},{"given":"Yongqiang","family":"Cheng","sequence":"additional","affiliation":[{"name":"School of Electronic Science, National University of Defence Technology, Changsha 410073, China"}]},{"given":"Hongqiang","family":"Wang","sequence":"additional","affiliation":[{"name":"School of Electronic Science, National University of Defence Technology, Changsha 410073, China"}]},{"given":"Yuliang","family":"Qin","sequence":"additional","affiliation":[{"name":"School of Electronic Science, National University of Defence Technology, Changsha 410073, China"}]}],"member":"1968","published-online":{"date-parts":[[2018,3,23]]},"reference":[{"key":"ref_1","unstructured":"Visuri, S., Oja, H., and Koivunen, V. (1999, January 20\u201323). Multichannel signal processing using spatial rank covariance matrices. Proceedings of the IEEE Eurasip Workshop on Nonlinear Signal and Image Processing, Antalya, Turkey."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"2891","DOI":"10.1109\/78.236511","article-title":"Robust estimation of structured covariance matrices","volume":"41","author":"Williams","year":"1993","journal-title":"IEEE Trans. Signal Process."},{"key":"ref_3","unstructured":"Barton, T., and Smith, S. (1997, January 21\u201324). Structured Covariance Estimation for Space-Time Adaptive Processing. Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Munich, Germany."},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Semeniaka, A.V., Lekhovitskiy, D.I., and Rachkov, D.S. (2011, January 24\u201327). Comparative analysis of Toeplitz covariance matrix estimation methods for space-time adaptive signal processing. Proceedings of the IEEE CIE International Conference on Radar, Chengdu, China.","DOI":"10.1109\/CIE-Radar.2011.6159636"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1049\/iet-rsn:20060113","article-title":"Design and experimental validation of knowledge-based constant false alarm rate detectors","volume":"1","author":"Maio","year":"2007","journal-title":"IET Radar Sonar Navig."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1109\/TAES.2010.5417154","article-title":"Knowledge-Aided Bayesian Radar Detectors Their Application to Live Data","volume":"46","author":"Maio","year":"2010","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"5970","DOI":"10.1109\/TSP.2011.2168220","article-title":"Knowledge-Aided Parametric Tests for Multichannel Adaptive Signal Detection","volume":"59","author":"Wang","year":"2011","journal-title":"IEEE Trans. Signal Process."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"2704","DOI":"10.1109\/TSP.2006.873589","article-title":"Parametric adaptive signal detection for hyperspectral imaging","volume":"54","author":"Li","year":"2006","journal-title":"IEEE Trans. Signal Process."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"3004","DOI":"10.1109\/TSP.2012.2190408","article-title":"Maximum Likelihood Estimation of a Structured Covariance Matrix with a Condition Number Constraint","volume":"60","author":"Aubry","year":"2012","journal-title":"IEEE Trans. Signal Process."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"3207","DOI":"10.1109\/TSP.2016.2539140","article-title":"Adaptive Detection of Point-Like Targets in Spectrally Symmetric Interference","volume":"64","author":"Maio","year":"2016","journal-title":"IEEE Trans. Signal Process."},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Liu, Z., and Barbaresco, F. (2013). Doppler Information Geometry for Wake Turbulence Monitoring, Springer.","DOI":"10.1007\/978-3-642-30232-9_11"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.crhy.2010.01.001","article-title":"Radar monitoring of a wake vortex: Electromagnetic reflection of wake turbulence in clear air","volume":"11","author":"Barbaresco","year":"2010","journal-title":"C. R. Phys."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Lapuyade-Lahorgue, J., and Barbaresco, F. (2008, January 26\u201330). Radar detection using Siegel distance between autoregressive processes, application to HF and X-band radar. Proceedings of the IEEE Radar Conference, Rome, Italy.","DOI":"10.1109\/RADAR.2008.4721049"},{"key":"ref_14","unstructured":"Balaji, B., and Barbaresco, F. (November, January 31). Application of Riemannian mean of covariance matrices to space-time adaptive processing. Proceedings of the IEEE Radar Conference, Amsterdam, The Netherlands."},{"key":"ref_15","first-page":"813","article-title":"Riemannian mean and space-time adaptive processing using projection and inversion algorithms","volume":"8714","author":"Balaji","year":"2013","journal-title":"Proc. SPIE"},{"key":"ref_16","unstructured":"Barbaresco, F. (2011, January 7\u20139). Robust statistical Radar Processing in Frechet metric space: OS-HDR-CFAR and OS-STAP Processing in Siegel homogeneous bounded domains. Proceedings of the International Radar Symposium (IRS), Leipzig, Germany."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1049\/iet-rsn.2012.0190","article-title":"Covariance matrix estimation via geometric barycenters and its application to radar training data selection","volume":"7","author":"Aubry","year":"2013","journal-title":"IET Radar Sonar Navig."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1049\/iet-rsn.2013.0043","article-title":"Median matrices and their application to radar training data selection","volume":"8","author":"Aubry","year":"2013","journal-title":"IET Radar Sonar Navig."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1049\/iet-spr.2016.0547","article-title":"Geometric means and medians with applications to target detection","volume":"11","author":"Hua","year":"2017","journal-title":"IET Signal Process."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.dsp.2017.06.019","article-title":"Matrix CFAR detectors based on symmetrized Kullback Leibler and total Kullback Leibler divergences","volume":"69","author":"Hua","year":"2017","journal-title":"Digit. Signal Process."},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Hua, X., Cheng, Y., Li, Y., Shi, Y., Wang, H., and Qin, Y. (2017). Target Detection in Sea Clutter via Weighted Averaging Filter on the Riemannian Manifold. Aerosp. Sci. Technol., 70.","DOI":"10.1016\/j.ast.2017.07.042"},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Charfi, M., Chebbi, Z., Moakher, M., and Vemuri, B.C. (2013, January 28\u201330). Using the Bhattacharyya Mean for the Filtering and Clustering of Positive-Definite Matrices. Proceedings of the Geometric Science of Information: First International Conference, GSI 2013, Paris, France.","DOI":"10.1007\/978-3-642-40020-9_61"},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Charfi, M., Chebbi, Z., Moakher, M., and Vemuri, B.C. (2013, January 7\u201311). Bhattacharyya median of symmetric positive-definite matrices and application to the denoising of diffusion-tensor fields. Proceedings of the IEEE International Symposium on Biomedical Imaging, San Francisco, CA, USA.","DOI":"10.1109\/ISBI.2013.6556702"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Jayasumana, S., Hartley, R., Salzmann, M., Li, H., and Harandi, M. (2013). Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices. Comput. Vis. Pattern Recog., 73\u201380.","DOI":"10.1109\/CVPR.2013.17"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"3105","DOI":"10.1016\/j.laa.2009.01.025","article-title":"Riemannian metrics on positive definite matrices related to means","volume":"430","author":"Hiai","year":"2008","journal-title":"Linear Algebra Appl."},{"key":"ref_26","first-page":"1","article-title":"Positive definite matrices and the S divergence","volume":"144","author":"Sra","year":"2011","journal-title":"Proc. Am. Math. Soc."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/s10659-005-9035-z","article-title":"On the Averaging of Symmetric Positive Definite Tensors","volume":"82","author":"Moakher","year":"2006","journal-title":"J. Elast."},{"key":"ref_28","unstructured":"Lang, S. (1946). Fundamentals of differential geometry. Graduate Texts in Mathematics, Springer."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"735","DOI":"10.1137\/S0895479803436937","article-title":"A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices","volume":"26","author":"Moakher","year":"2008","journal-title":"Siam J. Matrix Anal. Appl."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1002\/mrm.20965","article-title":"Log-Euclidean metrics for fast and simple calculus on diffusion tensors","volume":"56","author":"Arsigny","year":"2006","journal-title":"Magn. Reson. Med."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1081","DOI":"10.1214\/aos\/1176325512","article-title":"Efficiency Versus Robustness: The Case for Minimum Hellinger Distance and Related Methods","volume":"22","author":"Lindsay","year":"1994","journal-title":"Ann. Stat."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"2032","DOI":"10.1214\/aos\/1176348385","article-title":"Why Least Squares and Maximum Entropy? An Axiomatic Approach to Inference for Linear Inverse Problems","volume":"19","author":"Csiszar","year":"1991","journal-title":"Ann. Stat."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1016\/S0016-0032(96)00063-4","article-title":"The Jensen-Shannon divergence","volume":"334","author":"Menendez","year":"1997","journal-title":"J. Frankl. Inst."},{"key":"ref_34","first-page":"338","article-title":"Monte Carlo. Concepts, algorithms, and applications","volume":"39","author":"Fishman","year":"1996","journal-title":"Technometrics"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"258","DOI":"10.1016\/j.cpc.2016.10.016","article-title":"STARlight: A Monte Carlo simulation program for ultra peripheral collisions of relativistic ions","volume":"212","author":"Klein","year":"2016","journal-title":"Comput. Phys. Commun."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"1217","DOI":"10.1016\/j.jclepro.2016.10.038","article-title":"Sustainability indicators for industrial ovens and assessment using Fuzzy set theory and Monte Carlo simulation","volume":"140","author":"Pask","year":"2016","journal-title":"J. Clean. Prod."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.compchemeng.2017.11.018","article-title":"Monte Carlo simulation-based optimization for copolymerization processes with embedded chemical composition distribution","volume":"109","author":"Ma","year":"2018","journal-title":"Comput. Chem. Eng."},{"key":"ref_38","first-page":"1","article-title":"An algorithm to estimate the vertices of a tetrahedron from uniform random points inside","volume":"4","author":"Vilcu","year":"2016","journal-title":"Ann. Mat. Pura Appl."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1017\/S0956792517000079","article-title":"A backward Monte Carlo approach to exotic option pricing","volume":"29","author":"Bormetti","year":"2018","journal-title":"Eur. J. Appl. Math."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"1058","DOI":"10.1109\/7.722671","article-title":"Adaptive detection schemes in compound-Gaussian clutter","volume":"34","author":"Conte","year":"1998","journal-title":"IEEE Trans. Aerosp. Electron. Syst."}],"container-title":["Entropy"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1099-4300\/20\/4\/219\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,10]],"date-time":"2024-06-10T06:07:16Z","timestamp":1717999636000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1099-4300\/20\/4\/219"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,3,23]]},"references-count":40,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2018,4]]}},"alternative-id":["e20040219"],"URL":"https:\/\/doi.org\/10.3390\/e20040219","relation":{},"ISSN":["1099-4300"],"issn-type":[{"type":"electronic","value":"1099-4300"}],"subject":[],"published":{"date-parts":[[2018,3,23]]}}}