{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,5]],"date-time":"2025-04-05T09:29:12Z","timestamp":1743845352425,"version":"3.37.3"},"reference-count":47,"publisher":"MDPI AG","issue":"3","license":[{"start":{"date-parts":[[2018,3,5]],"date-time":"2018-03-05T00:00:00Z","timestamp":1520208000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"National Natural Science Foundation of P. R. China","award":["51576207"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Entropy"],"abstract":"An irreversible Maisotsenko reciprocating Brayton cycle (MRBC) model is established using the finite time thermodynamic (FTT) theory and taking the heat transfer loss (HTL), piston friction loss (PFL), and internal irreversible losses (IILs) into consideration in this paper. A calculation flowchart of the power output (P) and efficiency (\u03b7) of the cycle is provided, and the effects of the mass flow rate (MFR) of the injection of water to the cycle and some other design parameters on the performance of cycle are analyzed by detailed numerical examples. Furthermore, the superiority of irreversible MRBC is verified as the cycle and is compared with the traditional irreversible reciprocating Brayton cycle (RBC). The results can provide certain theoretical guiding significance for the optimal design of practical Maisotsenko reciprocating gas turbine plants.<\/jats:p>","DOI":"10.3390\/e20030167","type":"journal-article","created":{"date-parts":[[2018,3,6]],"date-time":"2018-03-06T12:37:25Z","timestamp":1520339845000},"page":"167","source":"Crossref","is-referenced-by-count":21,"title":["Thermodynamic Analysis of an Irreversible Maisotsenko Reciprocating Brayton Cycle"],"prefix":"10.3390","volume":"20","author":[{"given":"Fuli","family":"Zhu","sequence":"first","affiliation":[{"name":"Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan 430033, China"},{"name":"Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan 430033, China"},{"name":"College of Power Engineering, Naval University of Engineering, Wuhan 430033, China"}]},{"given":"Lingen","family":"Chen","sequence":"additional","affiliation":[{"name":"Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan 430033, China"},{"name":"Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan 430033, China"},{"name":"College of Power Engineering, Naval University of Engineering, Wuhan 430033, China"}]},{"given":"Wenhua","family":"Wang","sequence":"additional","affiliation":[{"name":"Institute of Thermal Science and Power Engineering, Naval University of Engineering, Wuhan 430033, China"},{"name":"Military Key Laboratory for Naval Ship Power Engineering, Naval University of Engineering, Wuhan 430033, China"},{"name":"College of Power Engineering, Naval University of Engineering, Wuhan 430033, China"}]}],"member":"1968","published-online":{"date-parts":[[2018,3,5]]},"reference":[{"unstructured":"Maisotsenko, V., Gillan, L.E., Heaton, T.L., and Gillan, A.D. (2004). Method and Plate Apparatus for Dew Point Evaporative Cooler Using a trough Wetting System. (No 6705096), U.S. Patent.","key":"ref_1"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1615\/InterJEnerCleanEnv.2012005830","article-title":"Way to energy abundance can be found through the Maisotsenko cycle","volume":"12","author":"Maisotsenko","year":"2011","journal-title":"Int. J. Energy A Clean Environ."},{"unstructured":"Maisotsenko, V.S., Gillan, L.E., Heaton, T.L., and Gillan, A.D. (2006). Power System and Method. (No 7007453), U.S. Patent.","key":"ref_3"},{"key":"ref_4","first-page":"75","article-title":"Maisotsenko open cycle used for gas turbine power generation","volume":"Volume 3","author":"Gillan","year":"2003","journal-title":"Proceedings of the International Joint Power Generation Conference"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"537","DOI":"10.1016\/j.rser.2016.08.022","article-title":"Overview of Maisotsenko cycle\u2014A way towards dew point evaporative cooling","volume":"66","author":"Mahmood","year":"2016","journal-title":"Renew. Sustain. Energy Rev."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1615\/InterJEnerCleanEnv.2012005808","article-title":"Evaluation of Maisotsenko power cycle thermodynamic efficiency","volume":"12","author":"Reyzin","year":"2011","journal-title":"Int. J. Energy A Clean Environ."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"338","DOI":"10.1016\/j.apenergy.2015.03.099","article-title":"Analysis of Maisotsenko open gas turbine power cycle with a detailed air saturator model","volume":"149","author":"Saghafifar","year":"2015","journal-title":"Appl. Energy"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"351","DOI":"10.1016\/j.applthermaleng.2015.02.032","article-title":"Analysis of Maisotsenko open gas turbine bottoming cycle","volume":"82","author":"Saghafifar","year":"2015","journal-title":"Appl. Therm. Eng."},{"unstructured":"Khalatov, A.A., Severin, S.D., Brodetskiy, PI., and Maisotsenko, V.S. (2015). Sub-atmospheric Reverse Brayton Cycle with Waste Heat Regeneration According to the Maisotsenko Cycle. Rep. Natl. Acad. Sci. Ukraine, 1.","key":"ref_9"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"686","DOI":"10.1016\/j.apenergy.2016.12.165","article-title":"Thermo-economic optimization of hybrid solar Maisotsenko bottoming cycles using heliostat field collector: Comparative analysis","volume":"190","author":"Saghafifar","year":"2017","journal-title":"Applied Energy"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1063\/1.2916405","article-title":"Thermodynamics in finite time","volume":"37","author":"Andresen","year":"1984","journal-title":"Phys. Today"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"1191","DOI":"10.1063\/1.362674","article-title":"Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time process","volume":"79","author":"Bejan","year":"1996","journal-title":"J. Appl. Phys."},{"unstructured":"Chen, L.G., and Sun, F.R. (2004). Advances in Finite Time Thermodynamics: Analysis and Optimization, Nova Science Publishers.","key":"ref_13"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"529","DOI":"10.3390\/e11040529","article-title":"Optimal thermodynamics-New upperbounds","volume":"11","author":"Feidt","year":"2009","journal-title":"Entropy"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"023119","DOI":"10.1063\/1.4798313","article-title":"Determination of the optimum temperatures and mass ratios of steam injected into turbocharged internal combustion engines","volume":"5","author":"Gonca","year":"2013","journal-title":"J. Renew. Sustain. Energy"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"2100","DOI":"10.3390\/e15062100","article-title":"Quantum thermodynamics: A dynamical viewpoint","volume":"15","author":"Kosloff","year":"2013","journal-title":"Entropy"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"3764","DOI":"10.1016\/j.apm.2015.10.044","article-title":"The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle","volume":"40","author":"Gonca","year":"2016","journal-title":"Appl. Math. Model."},{"doi-asserted-by":"crossref","unstructured":"Ge, Y.L., Chen, L.G., and Sun, F.R. (2016). Progress in finite time thermodynamic studies for internal combustion enginecycles. Entropy, 18.","key":"ref_18","DOI":"10.3390\/e18040139"},{"doi-asserted-by":"crossref","unstructured":"Liu, S.N., and Ou, C.J. (2016). Maximum power output of quantum heat engine with energy bath. Entropy, 18.","key":"ref_19","DOI":"10.3390\/e18060205"},{"doi-asserted-by":"crossref","unstructured":"Feidt, M., Costea, M., Petrescu, S., and Stanciu, C. (2016). Nonlinear thermodynamic analysis and optimization of a Carnot engine cycle. Entropy, 18.","key":"ref_20","DOI":"10.3390\/e18070243"},{"unstructured":"Chen, L.G., and Xia, S.J. (2017). Generalized Thermodynamic Dynamic-Optimization of Irreversible Processes, Science Press. (In Chinese).","key":"ref_21"},{"unstructured":"Chen, L.G., and Xia, S.J. (2017). Generalized Thermodynamic Dynamic-Optimization of Irreversible Cycles\u2014Thermodynamic and Chemical Theoretical Cycles, Science Press. (In Chinese).","key":"ref_22"},{"doi-asserted-by":"crossref","unstructured":"Gonzalez-Ayala, J., Roco, J.M.M., Medina, A., and Calvo-Hernandez, A. (2017). Carnot-like heat engines versus low-dissipation models. Entropy, 19.","key":"ref_23","DOI":"10.3390\/e19040182"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"1211","DOI":"10.1016\/0017-9310(88)90064-6","article-title":"Theory of heat transfer-irreversible power plants","volume":"31","author":"Bejan","year":"1988","journal-title":"Int. J. Heat Mass Transf."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1515\/jnet-2014-0030","article-title":"Modeling and optimization of maximum available work for irreversible gas power cycles with temperature dependent specific heat","volume":"40","author":"Yamik","year":"2015","journal-title":"J. Non-Equilibrium Thermodyn."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1140\/epjp\/i2015-15093-5","article-title":"Performance assessment of an irreversible nano Brayton cycle operating with Maxwell-Boltzmann gas","volume":"130","author":"Caner","year":"2015","journal-title":"Eur. Phys. J. Plus"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"1990","DOI":"10.1016\/j.physleta.2015.06.020","article-title":"Application of exergetic sustainability index to a nano-scale irreversible Brayton cycle operating with ideal Bose and Fermi gasses","volume":"379","author":"Caner","year":"2015","journal-title":"Phys. Lett. A"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.enconman.2017.01.054","article-title":"Thermo-ecological performance analysis of a Joule-Brayton cycle (JBC) turbine with considerations of heat transfer losses and temperature-dependent specific heats","volume":"138","author":"Gonca","year":"2017","journal-title":"Energy Convers. Manag."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1016\/j.enconman.2017.06.003","article-title":"Performance analysis of irreversible solid oxide fuel cell\u2014Brayton heat engine with ecological based thermo-environmental criterion","volume":"148","year":"2017","journal-title":"Energy Convers. Manag."},{"key":"ref_30","first-page":"25","article-title":"Performance analysis of an irreversible regenerative Brayton cycle based on ecological optimization criterion","volume":"9","author":"Kumar","year":"2015","journal-title":"Int. J. Therm. Environ. Eng."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"790","DOI":"10.1016\/j.enconman.2015.07.020","article-title":"Finite time exergy analysis and multi-objective ecological optimization of a regenerative Brayton cycle considering the impact of flow rate variations","volume":"103","author":"Naserian","year":"2015","journal-title":"Energy Convers. Manag."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"741","DOI":"10.1016\/j.asej.2015.06.007","article-title":"Multi-objective thermodynamic optimization of an irreversible regenerative Brayton cycle using evolutionary algorithm and decision making","volume":"7","author":"Kumar","year":"2016","journal-title":"Ain Shams Eng. J."},{"key":"ref_33","first-page":"861","article-title":"Thermo-economic optimization and parametric study of an irreversible regenerative Brayton cycle","volume":"2","author":"Kaushik","year":"2016","journal-title":"J. Therm. Eng."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.enconman.2017.03.067","article-title":"Performance optimization of a regenerative Brayton heat engine coupled with a parabolic dish solar collector","volume":"143","author":"Malali","year":"2017","journal-title":"Energy Convers. Manag."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1179\/014426010X12839334040933","article-title":"Ecological performance optimization for an open-cycle ICR gas turbine power plant. Part 1 thermodynamic modeling","volume":"83","author":"Chen","year":"2010","journal-title":"J. Energy Inst."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1179\/014426010X12839334040979","article-title":"Ecological performance optimization for an open-cycle ICR gas turbine power plant. Part 2 Optimization","volume":"83","author":"Wang","year":"2010","journal-title":"J. Energy Inst."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"2885","DOI":"10.1016\/j.applthermaleng.2009.02.011","article-title":"Power and efficiency optimization for combined Brayton and inverse Brayton cycles","volume":"29","author":"Zhang","year":"2009","journal-title":"Appl. Therm. Eng."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1016\/j.energy.2017.02.096","article-title":"Exergetic and ecological performance analyses of a gas turbine system with two intercoolers and two re-heaters","volume":"124","author":"Gonca","year":"2017","journal-title":"Energy"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1088\/0143-0807\/24\/4\/354","article-title":"The universal power and efficiency characteristics for irreversible reciprocating heat engine cycles","volume":"24","author":"Qin","year":"2003","journal-title":"Eur. J. Phys."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1080\/01430750.2008.9675059","article-title":"Performance of reciprocating Brayton cycle with heat transfer, friction and variable specific heats of working fluid","volume":"29","author":"Ge","year":"2008","journal-title":"Int. J. Ambient Energy"},{"unstructured":"Shen, W.D., and Tong, J.G. (2007). Engineering Thermodynamics, High Education Press. (In Chinese).","key":"ref_41"},{"unstructured":"Zhang, J.M. (1987). Optimal Design and Working Condition Analysis of Marine Steam Turbine, Naval University of Engineering Press. (In Chinese).","key":"ref_42"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"351","DOI":"10.1016\/j.enconman.2004.04.001","article-title":"Comparative performance analysis of irreversible Dual and Diesel cycles under maximum power conditions","volume":"46","author":"Parlak","year":"2005","journal-title":"Energy Convers. Manag."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1115\/1.2906270","article-title":"An explanation for observed compression ratios in internal combustion engines","volume":"113","author":"Klein","year":"1991","journal-title":"J. Eng. Gas Turbine Power"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"1986","DOI":"10.1073\/pnas.78.4.1986","article-title":"Finite-time thermodynamics: Engine performance improved by optimized piston motion","volume":"78","author":"Mozurkewich","year":"1981","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1063\/1.329894","article-title":"Optimal paths for thermodynamic systems: The ideal Otto cycle","volume":"53","author":"Mozurkewich","year":"1982","journal-title":"J. Appl. Phys."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"3224","DOI":"10.1016\/j.enconman.2006.02.016","article-title":"Effects of heat transfer, friction and variable specific-heats of a working fluid on performance of an irreversible Dual cycle","volume":"47","author":"Chen","year":"2006","journal-title":"Energy Convers. Manag."}],"container-title":["Entropy"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1099-4300\/20\/3\/167\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,10]],"date-time":"2024-06-10T01:40:47Z","timestamp":1717983647000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1099-4300\/20\/3\/167"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,3,5]]},"references-count":47,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2018,3]]}},"alternative-id":["e20030167"],"URL":"https:\/\/doi.org\/10.3390\/e20030167","relation":{},"ISSN":["1099-4300"],"issn-type":[{"type":"electronic","value":"1099-4300"}],"subject":[],"published":{"date-parts":[[2018,3,5]]}}}