{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,13]],"date-time":"2024-06-13T13:57:28Z","timestamp":1718287048718},"reference-count":51,"publisher":"MDPI AG","issue":"2","license":[{"start":{"date-parts":[[2018,1,31]],"date-time":"2018-01-31T00:00:00Z","timestamp":1517356800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Entropy"],"abstract":"A fully adaptive particle filtering algorithm is proposed in this paper which is capable of updating both state process models and measurement models separately and simultaneously. The approach is a significant step toward more realistic online monitoring or tracking damage. The majority of the existing methods for Bayes filtering are based on predefined and fixed state process and measurement models. Simultaneous estimation of both state and model parameters has gained attention in recent literature. Some works have been done on updating the state process model. However, not many studies exist regarding an update of the measurement model. In most of the real-world applications, the correlation between measurements and the hidden state of damage is not defined in advance and, therefore, presuming an offline fixed measurement model is not promising. The proposed approach is based on optimizing relative entropy or Kullback\u2013Leibler divergence through a particle filtering algorithm. The proposed algorithm is successfully applied to a case study of online fatigue damage estimation in composite materials.<\/jats:p>","DOI":"10.3390\/e20020100","type":"journal-article","created":{"date-parts":[[2018,1,31]],"date-time":"2018-01-31T17:41:24Z","timestamp":1517420484000},"page":"100","source":"Crossref","is-referenced-by-count":9,"title":["Fully Adaptive Particle Filtering Algorithm for Damage Diagnosis and Prognosis"],"prefix":"10.3390","volume":"20","author":[{"given":"Elaheh","family":"Rabiei","sequence":"first","affiliation":[{"name":"Center for Risk and Reliability, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA"},{"name":"B. John Garrick Institute for the Risk Sciences, University of California (UCLA), Los Angeles, CA 90095, USA"}]},{"given":"Enrique","family":"Droguett","sequence":"additional","affiliation":[{"name":"Center for Risk and Reliability, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA"},{"name":"Department of Mechanical Engineering, University of Chile, Santiago 8370448, Chile"}]},{"given":"Mohammad","family":"Modarres","sequence":"additional","affiliation":[{"name":"Center for Risk and Reliability, Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA"}]}],"member":"1968","published-online":{"date-parts":[[2018,1,31]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"590","DOI":"10.1080\/01621459.1999.10474153","article-title":"Filtering Via Simulation: Auxiliary Particle Filters","volume":"94","author":"Pitt","year":"1999","journal-title":"J. Am. Stat. Assoc."},{"key":"ref_2","doi-asserted-by":"crossref","unstructured":"Doucet, A., de Freitas, N., and Gordon, N. (2001). Improving Regularised Particle Filters. Sequential Monte Carlo Methods in Practice, Springer.","DOI":"10.1007\/978-1-4757-3437-9"},{"key":"ref_3","unstructured":"Doucet, A., de Freitas, N., van der Merwe, R., and Wan, E.A. (2000). The Unscented Particle Filter, Department of Engineering, University of Cambridge."},{"key":"ref_4","first-page":"81","article-title":"Lithium-ion battery life prognostic health management system using particle filtering framework","volume":"225","author":"Dalal","year":"2011","journal-title":"Proc. Inst. Mech. Eng."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1109\/MIM.2008.4579269","article-title":"Prognostics in battery health management","volume":"11","author":"Goebel","year":"2008","journal-title":"IEEE Instrum. Meas. Mag."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"805","DOI":"10.1016\/j.microrel.2012.12.004","article-title":"Remaining useful life prediction of lithium-ion battery with unscented particle filter technique","volume":"53","author":"Miao","year":"2013","journal-title":"Microelectron. Reliab."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1016\/j.ijhydene.2013.10.054","article-title":"Prognostics of PEM fuel cell in a particle filtering framework","volume":"39","author":"Jouin","year":"2014","journal-title":"Int. J. Hydrog. Energy"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1007\/s11668-014-9902-7","article-title":"Development of an Efficient Prognostic Estimator","volume":"15","author":"Yoon","year":"2014","journal-title":"J. Fail. Anal. Prev."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"222","DOI":"10.1016\/j.ymssp.2010.08.012","article-title":"Latent degradation indicators estimation and prediction: A Monte Carlo approach","volume":"25","author":"Zhou","year":"2011","journal-title":"Mech. Syst. Signal Process."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1016\/j.jprocont.2005.01.001","article-title":"Particle filters for state and parameter estimation in batch processes","volume":"15","author":"Chen","year":"2005","journal-title":"J. Process Control"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"585","DOI":"10.1016\/j.ymssp.2011.09.029","article-title":"Application of a state space modeling technique to system prognostics based on a health index for condition-based maintenance","volume":"28","author":"Sun","year":"2012","journal-title":"Mech. Syst. Signal Process."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.jmsy.2015.03.005","article-title":"Enhanced particle filter for tool wear prediction","volume":"36","author":"Wang","year":"2015","journal-title":"J. Manuf. Syst."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1016\/j.ymssp.2014.10.010","article-title":"Prognostics of slurry pumps based on a moving-average wear degradation index and a general sequential Monte Carlo method","volume":"56\u201357","author":"Wang","year":"2015","journal-title":"Mech. Syst. Signal Process."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1109\/TSMCA.2012.2207109","article-title":"Model-based prognostics with concurrent damage progression processes","volume":"43","author":"Daigle","year":"2013","journal-title":"IEEE Trans. Syst. Man Cybern. Syst."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Rabiei, E., Droguett, E.L., and Modarres, M. (2017, January 23\u201326). Damage monitoring and prognostics in composites via dynamic Bayesian networks. Proceedings of the 2017 Annual Reliability and Maintainability Symposium (RAMS), Orlando, FL, USA.","DOI":"10.1109\/RAM.2017.7889668"},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Rabiei, E., Droguett, E.L., and Modarres, M. (2015, January 7\u201310). Damage Precursor Based Structural Health Monitoring and Damage Prognosis Framework. Proceedings of the European Safety and Reliability Conference (ESREL), Z\u00fcrich, Switzerland.","DOI":"10.1201\/b19094-319"},{"key":"ref_17","unstructured":"Corbetta, M., Sbarufatti, C., Saxena, A., Giglio, M., and Goebel, K. (2016, January 11\u201313). Model-Based Fatigue Prognosis of Fiber-Reinforced Laminates Exhibiting Concurrent Damage Mechanisms. Proceedings of the European Conference on Structural Control (EACS 2016), Sheffield, UK."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1016\/j.ress.2015.04.018","article-title":"Condition-based prediction of time-dependent reliability in composites","volume":"142","author":"Sankararaman","year":"2015","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1016\/j.ymssp.2015.11.008","article-title":"Particle filter-based prognostics: Review, discussion and perspectives","volume":"72","author":"Jouin","year":"2016","journal-title":"Mech. Syst. Signal Process."},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Wang, X., Li, T., Sun, S., and Corchado, J.M. (2017). A Survey of Recent Advances in Particle Filters and Remaining Challenges for Multitarget Tracking. Sensors, 17.","DOI":"10.3390\/s17122707"},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Li, T., Su, J., Liu, W., and Corchado, J.M. (2017). Approximate Gaussian Conjugacy: Parametric Recursive Filtering under Nonlinearity, Multimodality, Uncertainty, and Constraint, and Beyond. Front. Inf. Technol. Electron. Eng., in press.","DOI":"10.1631\/FITEE.1700379"},{"key":"ref_22","unstructured":"Andrieu, C., Doucet, A., and Tadic, V.B. (2005, January 15). On-line parameter estimation in general state-space models. Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain."},{"key":"ref_23","first-page":"1203","article-title":"A Self-Organizing State-Space Model","volume":"93","author":"Kitagawa","year":"1998","journal-title":"J. Am. Stat. Assoc."},{"key":"ref_24","first-page":"107","article-title":"Novel approach to nonlinear and non-Gaussian Bayesian state estimation","volume":"140","author":"Gordon","year":"1993","journal-title":"IEE Proc. F"},{"key":"ref_25","first-page":"325","article-title":"Mixture models, Monte Carlo, Bayesian updating and dynamic models","volume":"24","author":"West","year":"1993","journal-title":"Comput. Sci. Stat."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Doucet, A., de Freitas, N., and Gordon, N. (2001). Combined Parameter and State Estimation in Simulation-Based Filtering. Sequential Monte Carlo Methods in Practice, Springer.","DOI":"10.1007\/978-1-4757-3437-9"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1109\/78.978383","article-title":"Particle filters for state-space models with the presence of unknown static parameters","volume":"50","author":"Storvik","year":"2002","journal-title":"IEEE Trans. Signal Process."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.ress.2014.10.003","article-title":"A particle filtering and kernel smoothing-based approach for new design component prognostics","volume":"134","author":"Hu","year":"2015","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"718","DOI":"10.1109\/TR.2015.2500681","article-title":"Online Performance Assessment Method for a Model-Based Prognostic Approach","volume":"65","author":"Hu","year":"2015","journal-title":"IEEE Trans. Reliab."},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Tulsyan, A., Huang, B., Gopaluni, R.B., and Forbes, J.F. (arXiv, 2013). On-line Bayesian parameter estimation in general non-linear state-space models: A tutorial and new results, arXiv.","DOI":"10.1016\/j.jprocont.2013.01.010"},{"key":"ref_31","unstructured":"Kantas, N., Doucet, A., Singh, S.S., and Maciejowski, J. (2009, January 6\u20138). An overview of sequential Monte Carlo methods for parameter estimation on general state-space models. Proceedings of the 15th IFAC Symposium on System Identification, Saint Malo, France."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"814","DOI":"10.1016\/j.engappai.2012.02.015","article-title":"A data-model-fusion prognostic framework for dynamic system state forecasting","volume":"25","author":"Liu","year":"2012","journal-title":"Eng. Appl. Artif. Intell."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"221","DOI":"10.5391\/IJFIS.2007.7.4.221","article-title":"A particle filtering approach for on-line failure prognosis in a planetary carrier plate","volume":"7","author":"Orchard","year":"2007","journal-title":"Int. J. Fuzzy Log. Intell. Syst."},{"key":"ref_34","unstructured":"Saha, B., and Goebel, K. (October, January 27). Modeling Li-ion battery capacity depletion in a particle filtering framework. Proceedings of the Annual Conference of the Prognostics and Health Management Society, San Diego, CA, USA."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1016\/j.ress.2010.08.009","article-title":"Particle filtering prognostic estimation of the remaining useful life of nonlinear components","volume":"96","author":"Zio","year":"2011","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Rabiei, E., Droguett, E.L., and Modarres, M. (2016). A prognostics approach based on the evolution of damage precursors using dynamic Bayesian networks. Adv. Mech. Eng., 8.","DOI":"10.1177\/1687814016666747"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"5260","DOI":"10.1109\/TIE.2012.2224079","article-title":"Risk Measures for Particle-Filtering-Based State-of-Charge Prognosis in Lithium-Ion Batteries","volume":"60","author":"Orchard","year":"2013","journal-title":"IEEE Trans. Ind. Electron."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.automatica.2010.10.013","article-title":"System Identification of Nonlinear State-space Models","volume":"47","author":"Wills","year":"2011","journal-title":"Automatica"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"1081","DOI":"10.1002\/cjce.20113","article-title":"A particle filter approach to identification of nonlinear processes under missing observations","volume":"86","author":"Gopaluni","year":"2008","journal-title":"Can. J. Chem. Eng."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1214\/10-STS325","article-title":"Particle Learning and Smoothing","volume":"25","author":"Carvalho","year":"2010","journal-title":"Stat. Sci."},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Rabiei, E. (2016). Damage Precursor Based Structural Health Monitoring and Prognostic Framework Using Dynamic Bayesian Network. [Ph.D. Thesis, University of Maryland].","DOI":"10.1201\/b19094-319"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1214\/aoms\/1177729694","article-title":"On Information and Sufficiency","volume":"22","author":"Kullback","year":"1951","journal-title":"Ann. Math. Stat."},{"key":"ref_43","unstructured":"Bishop, C.M. (2006). Pattern Recognition and Machine Learning, Springer."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/S0377-2217(96)00385-2","article-title":"Optimization of computer simulation models with rare events","volume":"99","author":"Rubinstein","year":"1997","journal-title":"Eur. J. Oper. Res."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1023\/A:1010091220143","article-title":"The Cross-Entropy Method for Combinatorial and Continuous Optimization","volume":"1","author":"Rubinstein","year":"1999","journal-title":"Methodol. Comput. Appl. Probab."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1007\/s10479-005-5724-z","article-title":"A tutorial on the cross-entropy method","volume":"134","author":"Kroese","year":"2005","journal-title":"Ann. Oper. Res."},{"key":"ref_47","unstructured":"Benham, T., Duan, Q., Kroese, D.P., and Liquet, B. (arXiv, 2015). CEoptim: Cross-Entropy R Package for Optimization, arXiv."},{"key":"ref_48","doi-asserted-by":"crossref","unstructured":"Fox, D. (2001). KLD-sampling: Adaptive particle filters. Advances in Neural Information PROCESSING Systems, The MIT Press.","DOI":"10.7551\/mitpress\/1120.003.0096"},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"985","DOI":"10.1177\/0278364903022012001","article-title":"Adapting the sample size in particle filters through KLD-sampling","volume":"22","author":"Fox","year":"2003","journal-title":"Int. J. Robot. Res."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"1613","DOI":"10.1016\/j.compositesb.2011.08.002","article-title":"Dissipated thermal energy and damage evolution of Glass\/Epoxy using infrared thermography and acoustic emission","volume":"43","author":"Naderi","year":"2012","journal-title":"Compos. Part B Eng."},{"key":"ref_51","unstructured":"(2017, January 20). R: The R Project for Statistical Computing. Available online: https:\/\/www.r-project.org\/."}],"container-title":["Entropy"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1099-4300\/20\/2\/100\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,9]],"date-time":"2024-06-09T18:06:37Z","timestamp":1717956397000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1099-4300\/20\/2\/100"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,1,31]]},"references-count":51,"journal-issue":{"issue":"2","published-online":{"date-parts":[[2018,2]]}},"alternative-id":["e20020100"],"URL":"https:\/\/doi.org\/10.3390\/e20020100","relation":{},"ISSN":["1099-4300"],"issn-type":[{"value":"1099-4300","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,1,31]]}}}