{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T14:20:43Z","timestamp":1742394043334,"version":"3.37.3"},"reference-count":71,"publisher":"MDPI AG","issue":"1","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"the Ministry of Higher Education Malaysia","award":["FRGS\/1\/2019\/TK04\/UTM\/02\/46"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Data"],"abstract":"Recent studies on indoor positioning using Wi-Fi fingerprinting are motivated by the ubiquity of Wi-Fi networks and their promising positioning accuracy. Machine learning algorithms are commonly leveraged in indoor positioning works. The performance of machine learning based solutions are dependent on the availability, volume, quality, and diversity of related data. Several public datasets have been published in order to foster advancements in Wi-Fi based fingerprinting indoor positioning solutions. These datasets, however, lack dual-band Wi-Fi data within symmetric indoor environments. To fill this gap, this research work presents the UTMInDualSymFi dataset, as a source of dual-band Wi-Fi data, acquired within multiple residential buildings with symmetric deployment of access points. UTMInDualSymFi comprises the recorded dual-band raw data, training and test datasets, radio maps and supporting metadata. Additionally, a statistical radio map construction algorithm is presented. Benchmark performance was evaluated by implementing a machine-learning-based positioning algorithm on the dataset. In general, higher accuracy was observed, on the 5 GHz data scenarios. This systematically collected dataset enables the development and validation of future comprehensive solutions, inclusive of novel preprocessing, radio map construction, and positioning algorithms.<\/jats:p>","DOI":"10.3390\/data8010014","type":"journal-article","created":{"date-parts":[[2023,1,2]],"date-time":"2023-01-02T07:23:06Z","timestamp":1672644186000},"page":"14","source":"Crossref","is-referenced-by-count":14,"title":["UTMInDualSymFi: A Dual-Band Wi-Fi Dataset for Fingerprinting Positioning in Symmetric Indoor Environments"],"prefix":"10.3390","volume":"8","author":[{"given":"Asim","family":"Abdullah","sequence":"first","affiliation":[{"name":"Telecommunication Software and Systems Research Group, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Malaysia"}]},{"given":"Muhammad","family":"Haris","sequence":"additional","affiliation":[{"name":"Faculty of Computing, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Malaysia"},{"name":"Department of Computer Science & Bioinformatics, Khushal Khan Khattak University, Karak 27200, Pakistan"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5287-6280","authenticated-orcid":false,"given":"Omar Abdul","family":"Aziz","sequence":"additional","affiliation":[{"name":"Wireless Communication Centre, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Malaysia"}]},{"given":"Rozeha A.","family":"Rashid","sequence":"additional","affiliation":[{"name":"Telecommunication Software and Systems Research Group, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Malaysia"}]},{"given":"Ahmad Shahidan","family":"Abdullah","sequence":"additional","affiliation":[{"name":"Telecommunication Software and Systems Research Group, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor Bahru, Malaysia"}]}],"member":"1968","published-online":{"date-parts":[[2023,1,1]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"2568","DOI":"10.1109\/COMST.2019.2911558","article-title":"A Survey of Indoor Localization Systems and Technologies","volume":"21","author":"Zafari","year":"2019","journal-title":"IEEE Commun. Surv. Tutorials"},{"key":"ref_2","doi-asserted-by":"crossref","unstructured":"Brena, R.F., Garc\u00eda-V\u00e1zquez, J.P., Galv\u00e1n-Tejada, C.E., Mu\u00f1oz-Rodriguez, D., Vargas-Rosales, C., and Fangmeyer, J. (2017). Evolution of indoor positioning technologies: A survey. J. Sensors, 2017.","DOI":"10.1155\/2017\/2630413"},{"key":"ref_3","first-page":"201","article-title":"Review of indoor localization techniques","volume":"7","author":"Din","year":"2018","journal-title":"Int. J. Eng. Technol. UAE"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"2787","DOI":"10.1016\/j.comnet.2010.05.010","article-title":"The Internet of Things: A survey","volume":"54","author":"Atzori","year":"2010","journal-title":"Comput. Netw."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Yang, T., Cabani, A., and Chafouk, H. (2021). A Survey of Recent Indoor Localization Scenarios and Methodologies. Sensors, 21.","DOI":"10.3390\/s21238086"},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Frank\u00f3, A., Vida, G., and Varga, P. (2020). Reliable Identification Schemes for Asset and Production Tracking in Industry 4.0. Sensors, 20.","DOI":"10.3390\/s20133709"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"107476","DOI":"10.1016\/j.ijpe.2019.08.011","article-title":"The smart factory as a key construct of industry 4.0: A systematic literature review","volume":"221","author":"Osterrieder","year":"2020","journal-title":"Int. J. Prod. Econ."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"248","DOI":"10.31803\/tg-20190215200430","article-title":"Internet of things and smart warehouses as the future of logistics","volume":"13","author":"Buntak","year":"2019","journal-title":"Teh. Glas."},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Mendoza-Silva, G.M., Torres-Sospedra, J., and Huerta, J. (2019). A Meta-Review of Indoor Positioning Systems. Sensors, 19.","DOI":"10.3390\/s19204507"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1007\/s11277-021-08209-5","article-title":"A review of indoor localization techniques and wireless technologies","volume":"119","author":"Obeidat","year":"2021","journal-title":"Wirel. Pers. Commun."},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Subedi, S., and Pyun, J.Y. (2020). A survey of smartphone-based indoor positioning system using RF-based wireless technologies. Sensors, 20.","DOI":"10.3390\/s20247230"},{"key":"ref_12","unstructured":"Wang, Y., Yang, X., Zhao, Y., Liu, Y., and Cuthbert, L. (2013, January 11\u201314). Bluetooth positioning using RSSI and triangulation methods. Proceedings of the 2013 IEEE 10th Consumer Communications and Networking Conference, CCNC 2013, Las Vegas, NV, USA."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Rusli, M.E., Ali, M., Jamil, N., and Din, M.M. (2016, January 26\u201327). An Improved Indoor Positioning Algorithm Based on RSSI-Trilateration Technique for Internet of Things (IOT). Proceedings of the 2016 International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia.","DOI":"10.1109\/ICCCE.2016.28"},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Wang, B., Liu, X., Yu, B., Jia, R., and Gan, X. (2018). Pedestrian dead reckoning based on motion mode recognition using a smartphone. Sensors, 18.","DOI":"10.3390\/s18061811"},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"\u010cabarkapa, D., Gruji\u0107, I., and Pavlovi\u0107, P. (2015, January 14\u201317). Comparative analysis of the bluetooth low-energy indoor positioning systems. Proceedings of the 2015 12th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services (TELSIKS), Nis, Serbia.","DOI":"10.1109\/TELSKS.2015.7357741"},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Njima, W., Ahriz, I., Zayani, R., Terre, M., and Bouallegue, R. (2019). Deep CNN for Indoor Localization in IoT-Sensor Systems. Sensors, 19.","DOI":"10.3390\/s19143127"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"e3598","DOI":"10.1002\/ett.3598","article-title":"Anchor selection for UWB indoor positioning","volume":"30","author":"Albaidhani","year":"2019","journal-title":"Trans. Emerg. Telecommun. Technol."},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Qi, J., and Liu, G.P. (2017). A robust high-accuracy ultrasound indoor positioning system based on a wireless sensor network. Sensors, 17.","DOI":"10.3390\/s17112554"},{"key":"ref_19","unstructured":"Torres-Sospedra, J., Montoliu, R., Mart\u00ednez-Us\u00f3, A., Arnau, T.J., Avariento, J.P., Benedito-Bordonau, M., and Huerta, J. (2022, February 19). UJIIndoorLoc: A New Multi-Building and Multi-Floor Database for WLAN Fingerprint-Based Indoor Localization Problems. Available online: https:\/\/archive.ics.uci.edu\/ml\/datasets\/ujiindoorloc."},{"key":"ref_20","unstructured":"Moreira, A., Nicolau, M.J., Silva, I., Torres-Sospedra, J., Pend\u00e3o, C., and Meneses, F. (2022, February 19). The DSI Dataset for Wi-Fi Fingerprinting Using Mobile Devices. Available online: https:\/\/doi.org\/10.5281\/zenodo.3778646."},{"key":"ref_21","unstructured":"Moreira, A., Nicolau, M.J., Silva, I., Torres-Sospedra, J., Pend\u00e3o, C., and Meneses, F. (2022, February 19). Wi-Fi Fingerprinting Dataset with Multiple Simultaneous Interfaces. Available online: https:\/\/doi.org\/10.5281\/zenodo.3342526."},{"key":"ref_22","unstructured":"Parasuraman, R., Caccamo, S., Baberg, F., and Ogren, P. (2022, February 19). CRAWDAD Dataset kth\/rss (v. 2016-01-05). Available online: http:\/\/crawdad.org\/kth\/rss\/20160105."},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Lohan, E., Torres-Sospedra, J., Lepp\u00e4koski, H., Richter, P., Peng, Z., and Huerta, J. (2017). Wi-Fi Crowdsourced Fingerprinting Dataset for Indoor Positioning. Data, 2.","DOI":"10.3390\/data2040032"},{"key":"ref_24","unstructured":"Lohan, E.S., Torres-Sospedra, J., and Gonzalez, A. (2022, February 19). WiFi RSS Measurements in Tampere University Multi-Building Campus, 2017. Available online: https:\/\/zenodo.org\/record\/5174851."},{"key":"ref_25","unstructured":"Mendoza-Silva, G.M., Richter, P., Torres-Sospedra, J., Lohan, E.S., and Huerta, J. (2022, February 19). Long-Term Wi-Fi Fingerprinting Dataset and Supporting Material. Available online: https:\/\/doi.org\/10.5281\/zenodo.1066041."},{"key":"ref_26","unstructured":"Roy, P., Chowdhury, C., Ghosh, D., and Bandyopadhyay, S. (2022, February 19). JUIndoorLoc Dataset. Available online: https:\/\/drive.google.com\/open?id=1_z1qhoRIcpineP9AHkfVGCfB2Fd_e-fD."},{"key":"ref_27","unstructured":"Salazar Gonz\u00e1lez, J.L., Soria Morillo, L.M., \u00c1lvarez Garc\u00eda, J.A., Enr\u00edquez, F., and Jimenez Ruiz, A.R. (2022, February 19). Energy-Efficient Indoor Localization WiFi-Fingerprint Dataset. Available online: https:\/\/ieee-dataport.org\/open-access\/energy-efficient-indoor-localization-wifi-fingerprint-dataset."},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Salahat, E., Kulaib, A., Ali, N., and Shubair, R. (2017, January 12\u201315). Exploring symmetry in wireless propagation channels. Proceedings of the 2017 European Conference on Networks and Communications (EuCNC), Oulu, Finland.","DOI":"10.1109\/EuCNC.2017.7980698"},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Nor Hisham, A.N., Ng, Y.H., Tan, C.K., and Chieng, D. (2022). Hybrid Wi-Fi and BLE Fingerprinting Dataset for Multi-Floor Indoor Environments with Different Layouts. Data, 7.","DOI":"10.3390\/data7110156"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"107997","DOI":"10.1016\/j.measurement.2020.107997","article-title":"Constructing a precise radio map and application of indoor positioning with dual-frequency Wi-Fi fingerprinting method","volume":"163","author":"Ozdemir","year":"2020","journal-title":"Measurement"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1493","DOI":"10.1007\/s11277-019-06797-x","article-title":"Performance comparison of 2.4 and 5 GHz WiFi signals and proposing a new method for mobile indoor positioning","volume":"110","author":"Alkan","year":"2020","journal-title":"Wirel. Pers. Commun."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"127150","DOI":"10.1109\/ACCESS.2021.3111083","article-title":"Machine Learning Based Indoor Localization Using Wi-Fi RSSI Fingerprints: An Overview","volume":"9","author":"Singh","year":"2021","journal-title":"IEEE Access"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"162664","DOI":"10.1109\/ACCESS.2019.2952221","article-title":"Energy-Efficient Indoor Localization WiFi-Fingerprint System: An Experimental Study","volume":"7","year":"2019","journal-title":"IEEE Access"},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Torres-Sospedra, J., Montoliu, R., Mart\u00ednez-Us\u00f3, A., Arnau, T.J., Avariento, J.P., Benedito-Bordonau, M., and Huerta, J. (2014, January 27\u201330). UJIIndoorLoc: A new multi-building and multi-floor database for WLAN fingerprint-based indoor localization problems. Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Busan, Korea.","DOI":"10.1109\/IPIN.2014.7275492"},{"key":"ref_35","first-page":"6092618","article-title":"Providing databases for different indoor positioning technologies: Pros and cons of magnetic field and Wi-Fi based positioning","volume":"2016","author":"Montoliu","year":"2016","journal-title":"Mob. Inf. Syst."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Mendoza-Silva, G.M., Richter, P., Torres-Sospedra, J., Lohan, E.S., and Huerta, J. (2018). Long-Term WiFi Fingerprinting Dataset for Research on Robust Indoor Positioning. Data, 3.","DOI":"10.3390\/data3010003"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"739","DOI":"10.1007\/s11277-019-06188-2","article-title":"JUIndoorLoc: A Ubiquitous Framework for Smartphone-Based Indoor Localization Subject to Context and Device Heterogeneity","volume":"106","author":"Roy","year":"2019","journal-title":"Wireless Pers. Commun."},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Moreira, A., Silva, I., Meneses, F., Nicolau, M.J., Pendao, C., and Torres-Sospedra, J. (2017, January 18\u201321). Multiple simultaneous Wi-Fi measurements in fingerprinting indoor positioning. Proceedings of the 2017 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Sapporo, Japan.","DOI":"10.1109\/IPIN.2017.8115914"},{"key":"ref_39","unstructured":"Torres-Sospedra, J., Montoliu, R., Mendoza-Silva, G.M., Belmonte, O., Rambla, D., and Huerta, J. (2022, February 19). Geotec Database. Available online: http:\/\/indoorloc.uji.es\/databases\/geotecDatabaseWGS.zip."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1109\/MWC.2016.7498078","article-title":"Indoor smartphone localization via fingerprint crowdsourcing: Challenges and approaches","volume":"23","author":"Wang","year":"2016","journal-title":"IEEE Wirel. Commun."},{"key":"ref_41","unstructured":"Lohan, E.S., Torres-Sospedra, J., Richter, P., Lepp\u00e4koski, H., Huerta, J., and Cramariuc, A. (2022, February 19). Crowdsourced WiFi Database and Benchmark Software for Indoor Positioning. Available online: https:\/\/zenodo.org\/record\/1001662."},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Correa, A., Barcelo, M., Morell, A., and Vicario, J.L. (2017). A Review of Pedestrian Indoor Positioning Systems for Mass Market Applications. Sensors, 17.","DOI":"10.3390\/s17081927"},{"key":"ref_43","unstructured":"Ruiz, A.R.J., Mendoza-Silva, G.M., Montoliu, R., Seco, F., and Torres-Sospedra, J. (2022, February 19). Datasets and Supporting Materials for the IPIN 2016 Competition Track 3 (Smartphone-Based, Off-Site). Available online: https:\/\/zenodo.org\/record\/2791530."},{"key":"ref_44","unstructured":"Ruiz, A.R.J., Mendoza-Silva, G.M., Seco, F., and Torres-Sospedra, J. (2022, February 19). Datasets and Supporting Materials for the IPIN 2017 Competition Track 3 (Smartphone-Based, Off-Site). Available online: https:\/\/zenodo.org\/record\/2823924."},{"key":"ref_45","unstructured":"Ruiz, A.R.J., Mendoza-Silva, G.M., Ortiz, M., Perez-Navarro, A., Perul, J., Seco, F., and Torres-Sospedra, J. (2022, February 19). Datasets and Supporting Materials for the IPIN 2018 Competition Track 3 (Smartphone-Based, Off-Site). Available online: https:\/\/zenodo.org\/record\/2823964."},{"key":"ref_46","unstructured":"Ruiz, A.R.J., Perez-Navarro, A., Crivello, A., Mendoza-Silva, G.M., Seco, F., Ortiz, M., Perul, J., and Torres-Sospedra, J. (2022, February 19). Datasets and Supporting Materials for the IPIN 2019 Competition Track 3 (Smartphone-Based, Off-Site). Available online: https:\/\/zenodo.org\/record\/3606765."},{"key":"ref_47","unstructured":"Torres-Sospedra, J., Gaibor, D.Q., Jim\u00e9nez, A.R., P\u00e9rez-Navarro, A., and Seco, F. (2022, February 19). Datasets and Supporting Materials for the IPIN 2020 Competition Track 3 (Smartphone-Based, Off-Site). Available online: https:\/\/zenodo.org\/record\/4314992."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"101186","DOI":"10.1016\/j.softx.2022.101186","article-title":"GetSensorData: An extensible Android-based application for multi-sensor data registration","volume":"19","author":"Seco","year":"2022","journal-title":"SoftwareX"},{"key":"ref_49","doi-asserted-by":"crossref","unstructured":"Barsocchi, P., Crivello, A., La Rosa, D., and Palumbo, F. (2016, January 4\u20137). A multisource and multivariate dataset for indoor localization methods based on WLAN and geo-magnetic field fingerprinting. Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN), Madrid, Spain.","DOI":"10.1109\/IPIN.2016.7743678"},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Zhong, Z., Tang, Z., Li, X., Yuan, T., Yang, Y., Wei, M., Zhang, Y., Sheng, R., Grant, N., and Ling, C. (2018, January 27\u201330). XJTLUIndoorLoc: A New Fingerprinting Database for Indoor Localization and Trajectory Estimation Based on Wi-Fi RSS and Geomagnetic Field. Proceedings of the Sixth International Symposium on Computing and Networking Workshops (CANDARW), Takayama, Japan.","DOI":"10.1109\/CANDARW.2018.00050"},{"key":"ref_51","doi-asserted-by":"crossref","unstructured":"Laska, M., Schulz, T., Grottke, J., Blut, C., and Blankenbach, J. (2022). VI-SLAM2tag: Low-Effort Labeled Dataset Collection for Fingerprinting-Based Indoor Localization. arXiv.","DOI":"10.1109\/IPIN54987.2022.9918148"},{"key":"ref_52","unstructured":"Laska, M., Schulz, T., Grottke, J., Blut, C., and Blankenbach, J. (2022, October 12). giaIndoorLoc\u2014Auto-Labeled WLAN + IMU Dataset Generated via VI-SLAM2tag. Available online: https:\/\/zenodo.org\/record\/6801310."},{"key":"ref_53","doi-asserted-by":"crossref","unstructured":"Nor Hisham, A.N., Ng, Y.H., Tan, C.K., and Chieng, D. (2022, November 11). Hybrid Wi-Fi and BLE Fingerprinting Dataset for Multi-Floor Indoor Environments with Different Layouts. Available online: https:\/\/zenodo.org\/record\/7306455.","DOI":"10.3390\/data7110156"},{"key":"ref_54","doi-asserted-by":"crossref","unstructured":"T\u00f3th, Z., and Tam\u00e1s, J. (2016, January 19\u201320). Miskolc IIS Hybrid IPS: Dataset for Hybrid Indoor Positioning. Proceedings of the 26th International Conference Radioelektronika (RADIOELEKTRONIKA), Kosice, Slovakia.","DOI":"10.1109\/RADIOELEK.2016.7477348"},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Mendoza-Silva, G.M., Matey-Sanz, M., Torres-Sospedra, J., and Huerta, J. (2019). BLE RSS measurements dataset for research on accurate indoor positioning. Data, 4.","DOI":"10.3390\/data4010012"},{"key":"ref_56","doi-asserted-by":"crossref","unstructured":"Baronti, P., Barsocchi, P., Chessa, S., Mavilia, F., and Palumbo, F. (2018). Indoor bluetooth low energy dataset for localization, tracking, occupancy, and social interaction. Sensors, 18.","DOI":"10.3390\/s18124462"},{"key":"ref_57","doi-asserted-by":"crossref","unstructured":"Aranda, F.J., Parralejo, F., \u00c1lvarez, F.J., and Torres-Sospedra, J. (2020). Multi-slot ble raw database for accurate positioning in mixed indoor\/outdoor environments. Data, 5.","DOI":"10.3390\/data5030067"},{"key":"ref_58","doi-asserted-by":"crossref","unstructured":"King, T., Kopf, S., Haenselmann, T., Lubberger, C., and Effelsberg, W. (2006, January 29). COMPASS: A Probabilistic Indoor Positioning System Based on 802.11 and Digital Compasses. Proceedings of the 1st International Workshop on Wireless Network Testbeds, Experimental Evaluation and Characterization, Los Angeles, CA, USA.","DOI":"10.1145\/1160987.1160995"},{"key":"ref_59","unstructured":"Mendoza-Silva, G.M., Matey-Sanz, M., Torres-Sospedra, J., and Huerta, J. (2022, February 19). Localization. Available online: http:\/\/wnlab.isti.cnr.it\/localization."},{"key":"ref_60","unstructured":"Mendoza-Silva, G.M., Matey-Sanz, M., Torres-Sospedra, J., and Huerta, J. (2022, February 19). BLE RSS Measurements Database and Supporting Materials. Available online: https:\/\/zenodo.org\/record\/1618692."},{"key":"ref_61","unstructured":"Aranda, F.J., Parralejo, F., \u00c1lvarez, F.J., and Torres-Sospedra, J. (2022, February 19). Multi-slot BLE raw database for accurate positioning in mixed indoor\/outdoor environments. Available online: https:\/\/zenodo.org\/record\/3927588."},{"key":"ref_62","unstructured":"King, T., Kopf, S., Haenselmann, T., Lubberger, C., and Effelsberg, W. (2022, February 19). CRAWDAD Dataset Mannheim\/Compass (v. 2008-04-11). Available online: https:\/\/crawdad.org\/mannheim\/compass\/20080411\/fingerprint."},{"key":"ref_63","unstructured":"RUCKUS (2022, February 19). RUCKUS R610 Indoor Access Point. Available online: https:\/\/webresources.ruckuswireless.com\/pdf\/datasheets\/ds-ruckus-r610.pdf."},{"key":"ref_64","unstructured":"olgor.com (2022, February 19). WiFi Analyzer. Available online: https:\/\/play.google.com\/store\/apps\/details?id=abdelrahman.wifianalyzerpro."},{"key":"ref_65","unstructured":"Microsoft (2022, February 19). Wlan Association Attributes. Available online: https:\/\/learn.microsoft.com\/en-us\/windows\/win32\/api\/wlanapi\/ns-wlanapi-wlan_association_attributes?redirectedfrom=MSDN."},{"key":"ref_66","doi-asserted-by":"crossref","unstructured":"Wang, H., Sen, S., Elgohary, A., Farid, M., Youssef, M., and Choudhury, R.R. (2012, January 25\u201329). No Need to War-Drive: Unsupervised Indoor Localization. Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, Low Wood Bay Lake District, UK.","DOI":"10.1145\/2307636.2307655"},{"key":"ref_67","doi-asserted-by":"crossref","unstructured":"Kim, Y., Shin, H., and Cha, H. (2012, January 19\u201323). Smartphone-based Wi-Fi pedestrian-tracking system tolerating the RSS variance problem. Proceedings of the 2012 IEEE International Conference on Pervasive Computing and Communications, Lugano, Switzerland.","DOI":"10.1109\/PerCom.2012.6199844"},{"key":"ref_68","doi-asserted-by":"crossref","unstructured":"Hightower, J., Schiele, B., and Strang, T. (2007). A Taxonomy for Radio Location Fingerprinting. Location- and Context-Awareness, Proceedings of the Third International Symposium, LoCA 2007, Oberpfaffenhofen, Germany, 20\u201321 September 2007, Springer.","DOI":"10.1007\/978-3-540-75160-1"},{"key":"ref_69","unstructured":"Conesa, J., P\u00e9rez-Navarro, A., Torres-Sospedra, J., and Montoliu, R. (2019). 4\u2014Radio Maps for Fingerprinting in Indoor Positioning. Geographical and Fingerprinting Data to Create Systems for Indoor Positioning and Indoor\/Outdoor Navigation, Academic Press."},{"key":"ref_70","unstructured":"Bahl, P., and Padmanabhan, V.N. (2000, January 26\u201330). RADAR: An in-building RF-based user location and tracking system. Proceedings of the Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No. 00CH37064), Tel Aviv, Israel."},{"key":"ref_71","doi-asserted-by":"crossref","unstructured":"Torres-Sospedra, J., Jim\u00e9nez, A.R., Moreira, A., Lungenstrass, T., Lu, W.C., Knauth, S., Mendoza-Silva, G.M., Seco, F., P\u00e9rez-Navarro, A., and Nicolau, M.J. (2018). Off-Line Evaluation of Mobile-Centric Indoor Positioning Systems: The Experiences from the 2017 IPIN Competition. Sensors, 18.","DOI":"10.3390\/s18020487"}],"container-title":["Data"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2306-5729\/8\/1\/14\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,24]],"date-time":"2024-08-24T08:56:06Z","timestamp":1724489766000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2306-5729\/8\/1\/14"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1,1]]},"references-count":71,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,1]]}},"alternative-id":["data8010014"],"URL":"https:\/\/doi.org\/10.3390\/data8010014","relation":{},"ISSN":["2306-5729"],"issn-type":[{"type":"electronic","value":"2306-5729"}],"subject":[],"published":{"date-parts":[[2023,1,1]]}}}