{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,14]],"date-time":"2024-05-14T00:36:30Z","timestamp":1715646990123},"reference-count":47,"publisher":"MDPI AG","issue":"5","license":[{"start":{"date-parts":[[2024,5,13]],"date-time":"2024-05-13T00:00:00Z","timestamp":1715558400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Talent Project of Tianchi Doctoral Program in Xinjiang Uygur Autonomous Region","award":["5105240152n"]},{"name":"Natural Science Foundation of Xinjiang Uygur Autonomous Region","award":["2023D14014"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Axioms"],"abstract":"This paper investigates a novel C0 nonconforming virtual element method (VEM) for solving the Kirchhoff plate obstacle problem, which is described by a fourth-order variational inequality (VI) of the first kind. In our study, we distinguish our approach by introducing new internal degrees of freedom to the traditional lowest-order C0 nonconforming VEM, which originally lacked such degrees. This addition not only facilitates error estimation but also enhances its intuitiveness. Importantly, our novel C0 nonconforming VEM naturally satisfies the constraints of the obstacle problem. We then establish an a priori error estimate for our novel C0 nonconforming VEM, with the result indicating that the lowest order of our method achieves optimal convergence. Finally, we present a numerical example to validate the theoretical result.<\/jats:p>","DOI":"10.3390\/axioms13050322","type":"journal-article","created":{"date-parts":[[2024,5,13]],"date-time":"2024-05-13T15:18:17Z","timestamp":1715613497000},"page":"322","source":"Crossref","is-referenced-by-count":0,"title":["A C0 Nonconforming Virtual Element Method for the Kirchhoff Plate Obstacle Problem"],"prefix":"10.3390","volume":"13","author":[{"given":"Bangmin","family":"Wu","sequence":"first","affiliation":[{"name":"College of Mathematics and Systems Science, Xinjiang University, Urumqi 830017, China"}]},{"given":"Jiali","family":"Qiu","sequence":"additional","affiliation":[{"name":"School of Mathematics and Statistics, Xi\u2019an Jiaotong University, Xi\u2019an 710049, China"}]}],"member":"1968","published-online":{"date-parts":[[2024,5,13]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.cma.2016.05.008","article-title":"Variational formulation and isogeometric analysis for fourth-order boundary value problems of gradient-elastic bar and plane strain\/stress problems","volume":"308","author":"Niiranen","year":"2016","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1016\/j.euromechsol.2016.09.001","article-title":"Variational formulations and general boundary conditions for sixth-order boundary value problems of gradientelastic Kirchhoff plates","volume":"61","author":"Niiranen","year":"2017","journal-title":"Eur. J. Mech. A-Solid."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1115\/1.4009435","article-title":"The effect of transverse shear deformation on the bending of elastic plates","volume":"12","author":"Reissner","year":"1945","journal-title":"J. Appl. Mech."},{"key":"ref_4","unstructured":"Timoshenko, S., and Woinowsky-krieger, S. (1959). Theory of Plates and Shells, McGraw-Hill."},{"key":"ref_5","first-page":"805","article-title":"Application of Kirchhoff\u2019s plate theory for design and analysis of stiffened plates","volume":"55","author":"Swider","year":"2017","journal-title":"J. Theor."},{"key":"ref_6","first-page":"374","article-title":"Application of Galerkin method in solving static and dynamic problems of Kirchhoff plates","volume":"7","author":"Shahba","year":"2015","journal-title":"J. Solid Mech."},{"key":"ref_7","first-page":"25","article-title":"Iterative approximation of fixed point problems and variational inequality problems on Hadamard manifolds","volume":"84","author":"He","year":"2022","journal-title":"UPB Bull. Ser. A"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"493","DOI":"10.1002\/cpa.3160200302","article-title":"Variational inequalities","volume":"20","author":"Lions","year":"1967","journal-title":"Commun. Pure Appl. Math."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"669","DOI":"10.1137\/S0036144595285963","article-title":"Engineering and economic applications of complementarity problems","volume":"39","author":"Ferris","year":"1997","journal-title":"SIAM Rev."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"111512","DOI":"10.1016\/j.automatica.2024.111512","article-title":"Observer design method for nonlinear generalized systems with nonlinear algebraic constraints with applications","volume":"162","author":"Meng","year":"2024","journal-title":"Automatica"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"110022","DOI":"10.1016\/j.ymssp.2022.110022","article-title":"Ensemble regression based on polynomial regression-based decision tree and its application in the in-situ data of tunnel boring machine","volume":"188","author":"Shi","year":"2023","journal-title":"Mech. Syst. Signal. Pract."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1108\/EC-10-2021-0583","article-title":"A multi-fidelity surrogate model based on extreme support vector regression: Fusing different fidelity data for engineering design","volume":"40","author":"Shi","year":"2023","journal-title":"Eng. Comput."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"3270","DOI":"10.1109\/TAC.2023.3321375","article-title":"Distributionally robust model predictive control with output feedback","volume":"69","author":"Li","year":"2023","journal-title":"IEEE Trans. Autom. Control"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"4728","DOI":"10.1109\/TCSVT.2023.3247944","article-title":"An iterative threshold algorithm of log-sum regularization for sparse problem","volume":"33","author":"Zhou","year":"2023","journal-title":"IEEE. Trans. Circuits. Syst. Video Technol."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"107153","DOI":"10.1016\/j.compstruc.2023.107153","article-title":"Static homotopy response analysis of structure with random variables of arbitrary distributions by minimizing stochastic residual error","volume":"288","author":"Zhang","year":"2023","journal-title":"Comput. Struct."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1142\/S0218202512500492","article-title":"Basic principles of virtual element methods","volume":"23","author":"Brezzi","year":"2013","journal-title":"Math. Models Methods Appl. Sci."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"105669","DOI":"10.1016\/j.compgeo.2023.105669","article-title":"Implementation of a coupled FEM-SBFEM for soil-structure interaction analysis of large-scale 3D base-isolated nuclear structures","volume":"162","author":"Li","year":"2023","journal-title":"Comput. Geotech."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"302","DOI":"10.1016\/j.compositesb.2018.12.066","article-title":"A new computationally efficient finite element formulation for nanoplates using second-order strain gradient Kirchhoff\u2019s plate theory","volume":"168","author":"Babu","year":"2019","journal-title":"Compos. Part. B-Eng."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"e202000046","DOI":"10.1002\/zamm.202000046","article-title":"Variational formulation and differential quadrature finite element for freely vibrating strain gradient Kirchhoff plates","volume":"101","author":"Zhang","year":"2021","journal-title":"Z. Angew. Math. Mech."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"794","DOI":"10.1137\/120874746","article-title":"Virtual elements for linear elasticity problems","volume":"51","author":"Brezzi","year":"2013","journal-title":"SIAM J. Numer. Anal."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1016\/j.cma.2014.05.005","article-title":"On the virtual element method for three-dimensional elasticity problems on arbitrary polyhedral meshes","volume":"282","author":"Gain","year":"2014","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"394","DOI":"10.1016\/j.jcp.2018.11.004","article-title":"The nonconforming virtual element method for elasticity problems","volume":"378","author":"Zhang","year":"2019","journal-title":"J. Comput. Phys."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"386","DOI":"10.1137\/13091141X","article-title":"A stream function formulation of the Stokes problem for the virtual element method","volume":"52","author":"Antonietti","year":"2014","journal-title":"SIAM J. Numer. Anal."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1051\/m2an\/2016032","article-title":"Divergence free virtual elements for the Stokes problem on polygonal meshes","volume":"51","author":"Lovadina","year":"2017","journal-title":"ESAIM Math. Model. Numer. Anal."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"2730","DOI":"10.1137\/18M1200762","article-title":"The divergence-free nonconforming virtual element for the Stokes problem","volume":"57","author":"Zhao","year":"2019","journal-title":"SIAM J. Numer Anal."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1137\/15M1008117","article-title":"A C1 virtual element method for the Cahn-Hilliard equation with polygonal meshes","volume":"54","author":"Antonietti","year":"2016","journal-title":"SIAM J. Numer. Anal."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1016\/j.cma.2012.09.012","article-title":"Virtual element methods for plate bending problems","volume":"253","author":"Brezzi","year":"2013","journal-title":"Comput. Methods Appl. Mech. Engrg."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"1671","DOI":"10.1142\/S021820251650041X","article-title":"The nonconforming virtual element method for plate bending problems","volume":"26","author":"Zhao","year":"2016","journal-title":"Math. Models Methods Appl. Sci."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1142\/S0218202518500100","article-title":"The fully nonconforming virtual element method for biharmonic problems","volume":"28","author":"Antonietti","year":"2018","journal-title":"Math. Models Methods Appl. Sci."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1007\/s10915-017-0632-3","article-title":"The Morley-type virtual element for plate bending problems","volume":"76","author":"Zhao","year":"2018","journal-title":"J. Sci. Comput."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1007\/s10915-019-00929-y","article-title":"Virtual element methods for elliptic variational inequalities of the second kind","volume":"80","author":"Feng","year":"2019","journal-title":"J. Sci. Comput."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"2388","DOI":"10.1007\/s10915-019-01090-2","article-title":"Virtual element method for an elliptic hemivariational inequality with applications to contact mechanics","volume":"81","author":"Feng","year":"2019","journal-title":"J. Sci. Comput."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/j.aml.2018.06.002","article-title":"Virtual element method for simplified friction problem","volume":"85","author":"Wang","year":"2018","journal-title":"Appl. Math. Lett."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"708","DOI":"10.1093\/imanum\/dry055","article-title":"Virtual element methods for the obstacle problem","volume":"40","author":"Wang","year":"2020","journal-title":"IMA J. Numer. Anal."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"113330","DOI":"10.1016\/j.cam.2020.113330","article-title":"The virtual element method for general elliptic hemivariational inequalities","volume":"389","author":"Wang","year":"2021","journal-title":"J. Comput. Appl. Math."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"1039","DOI":"10.1007\/s00466-016-1331-x","article-title":"A virtual element method for contact","volume":"58","author":"Wriggers","year":"2016","journal-title":"Comput. Mech."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"106125","DOI":"10.1016\/j.cnsns.2021.106125","article-title":"Virtual element method for a frictional contact problem with normal compliance","volume":"107","author":"Wu","year":"2022","journal-title":"Commun. Nonlinear Sci. Numer. Simul."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"1496","DOI":"10.1093\/imanum\/draa005","article-title":"Conforming and nonconforming virtual element methods for a Kirchhoff plate contact problem","volume":"41","author":"Wang","year":"2021","journal-title":"IMA J. Numer. Anal."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"115025","DOI":"10.1016\/j.cam.2022.115025","article-title":"Nonconforming virtual element methods for the fourth-order variational inequalities of the first kind","volume":"425","author":"Qiu","year":"2023","journal-title":"J. Comput. Appl. Math."},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Duvaut, G., and Lions, J.L. (1976). Inequalities in Mechanics and Physics, Springer.","DOI":"10.1007\/978-3-642-66165-5"},{"key":"ref_41","unstructured":"Wang, F., Han, W., Huang, J., and Zhang, T. (2015). Advances in Variational and Hemivariational Inequalities with Applications, Springer International."},{"key":"ref_42","unstructured":"Atkinson, K., and Han, W. (2009). Theoretical Numerical Analysis: A Functional Analysis Framework, Springer."},{"key":"ref_43","doi-asserted-by":"crossref","unstructured":"Glowinski, R. (1984). Numerical Methods for Nonlinear Variational Problems, Springer.","DOI":"10.1007\/978-3-662-12613-4"},{"key":"ref_44","unstructured":"Glowinski, R., Lions, J.L., and Tr\u00e8molixexres, R. (1981). Numerical Analysis of Variational Inequalities, North-Holland."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"2557","DOI":"10.1142\/S021820251750052X","article-title":"Stability analysis for the virtual element method","volume":"27","author":"Lovadina","year":"2017","journal-title":"Math. Models Methods Appl. Sci."},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Brenner, S.C., and Scott, L.R. (1994). Mathematical Theory of Finite Element Methods, Springer.","DOI":"10.1007\/978-1-4757-4338-8"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"1541","DOI":"10.1142\/S021820251440003X","article-title":"The hitchhiker\u2019s guide to the virtual element method","volume":"24","author":"Brezzi","year":"2014","journal-title":"Math. Models Methods Appl. Sci."}],"container-title":["Axioms"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2075-1680\/13\/5\/322\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,13]],"date-time":"2024-05-13T16:07:50Z","timestamp":1715616470000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2075-1680\/13\/5\/322"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5,13]]},"references-count":47,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2024,5]]}},"alternative-id":["axioms13050322"],"URL":"https:\/\/doi.org\/10.3390\/axioms13050322","relation":{},"ISSN":["2075-1680"],"issn-type":[{"value":"2075-1680","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,5,13]]}}}