{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,24]],"date-time":"2024-08-24T10:56:04Z","timestamp":1724496964400},"reference-count":68,"publisher":"MDPI AG","issue":"3","license":[{"start":{"date-parts":[[2021,7,26]],"date-time":"2021-07-26T00:00:00Z","timestamp":1627257600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Axioms"],"abstract":"\u201cOdd\u201d factor approximants of the special form suggested by Gluzman and Yukalov (J. Math. Chem. 2006, 39, 47) are amenable to optimization by power transformation and can be successfully applied to critical phenomena. The approach is based on the idea that the critical index by itself should be optimized through the parameters of power transform to be calculated from the minimal sensitivity (derivative) optimization condition. The critical index is a product of the algebraic self-similar renormalization which contributes to the expressions the set of control parameters typical to the algebraic self-similar renormalization, and of the power transform which corrects them even further. The parameter of power transformation is, in a nutshell, the multiplier connecting the critical exponent and the correction-to-scaling exponent. We mostly study the minimal model of critical phenomena based on expansions with only two coefficients and critical points. The optimization appears to bring quite accurate, uniquely defined results given by simple formulas. Many important cases of critical phenomena are covered by the simple formula. For the longer series, the optimization condition possesses multiple solutions, and additional constraints should be applied. In particular, we constrain the sought solution by requiring it to be the best in prediction of the coefficients not employed in its construction. In principle, the error\/measure of such prediction can be optimized by itself, with respect to the parameter of power transform. Methods of calculation based on optimized power-transformed factors are applied and results presented for critical indices of several key models of conductivity and viscosity of random media, swelling of polymers, permeability in two-dimensional channels. Several quantum mechanical problems are discussed as well.<\/jats:p>","DOI":"10.3390\/axioms10030162","type":"journal-article","created":{"date-parts":[[2021,7,26]],"date-time":"2021-07-26T13:25:52Z","timestamp":1627305952000},"page":"162","source":"Crossref","is-referenced-by-count":5,"title":["Critical Indices and Self-Similar Power Transform"],"prefix":"10.3390","volume":"10","author":[{"given":"Simon","family":"Gluzman","sequence":"first","affiliation":[{"name":"Materialica and Research Group, Bathurst St. 3000, Apt. 606, Toronto, ON M6B 3B4, Canada"}]}],"member":"1968","published-online":{"date-parts":[[2021,7,26]]},"reference":[{"key":"ref_1","unstructured":"Gluzman, S., Mityushev, V., and Nawalaniec, W. (2017). Computational Analysis of Structured Media, Academic Press."},{"key":"ref_2","unstructured":"Dryga\u015b, P., Gluzman, S., Mityushev, V., and Nawalaniec, W. (2020). Applied Analysis of Composite Media, Woodhead Publishing."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1007\/s10910-005-9003-7","article-title":"Self-Similar Power Transforms in Extrapolation Problems","volume":"39","author":"Gluzman","year":"2006","journal-title":"J. Math. Chem."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"595","DOI":"10.1017\/S0956792514000163","article-title":"Extrapolation of perturbation theory expansions by self-similar approximants","volume":"25","author":"Gluzman","year":"2014","journal-title":"Eur. J. Appl. Math."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1140\/epjp\/i2017-11820-2","article-title":"Critical indices from self-similar root approximants","volume":"132","author":"Gluzman","year":"2017","journal-title":"Eur. Phys. J. Plus"},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Gluzman, S. (2021). Optimized Factor Approximants and Critical Index. Symmetry, 13.","DOI":"10.3390\/sym13050903"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"2237","DOI":"10.1080\/00268970903250562","article-title":"Optimization of Self-Similar Factor Approximants","volume":"107","author":"Yukalov","year":"2009","journal-title":"Mol. Phys."},{"key":"ref_8","unstructured":"Tukey, J.W. (1977). Exploratory Data Analysis, Addison-Wesley."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1111\/j.2517-6161.1964.tb00553.x","article-title":"An analysis of transformations","volume":"26","author":"Box","year":"1964","journal-title":"J. R. Stat. Soc. Ser. B"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"1412","DOI":"10.1103\/PhysRevE.60.1412","article-title":"HOT: A mechanism for power laws in designed systems","volume":"60","author":"Carlson","year":"1999","journal-title":"Phys. Rev. E"},{"key":"ref_11","first-page":"10","article-title":"Theory of perturbations with a strong interaction","volume":"51","author":"Yukalov","year":"1976","journal-title":"Mosc. Univ. Phys. Bull."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"652","DOI":"10.1007\/BF01028917","article-title":"Model of a hybrid crystal","volume":"28","author":"Yukalov","year":"1976","journal-title":"Theor. Math. Phys."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1103\/PhysRevB.11.377","article-title":"Numerical evaluations of the critical properties of the two-dimensional Ising model","volume":"11","author":"Kadanoff","year":"1975","journal-title":"Phys. Rev. B"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"428","DOI":"10.1016\/j.physletb.2016.08.061","article-title":"The effective exponent \u03b3(Q) and the slope of the \u03b2-function","volume":"761","author":"Stevenson","year":"2016","journal-title":"Phys. Lett. B"},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Kleinert, H. (2006). Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets, World Scientific.","DOI":"10.1142\/6223"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"4205","DOI":"10.1143\/JPSJ.55.4205","article-title":"Statistical Mechanical Theory of Cooperative Phenomena.I. General Theory of Fluctuations, Coherent Anomalies and Scaling Exponents with Simple Applications to Critical Phenomena","volume":"55","author":"Suzuki","year":"1986","journal-title":"J. Phys. Soc. Jpn."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1143\/JPSJ.57.1","article-title":"Continued-Fraction CAM Theory","volume":"57","author":"Suzuki","year":"1988","journal-title":"J. Phys. Soc. Jpn."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1103\/PhysRevLett.79.333","article-title":"Critical Indices as Limits of Control Functions","volume":"79","author":"Yukalov","year":"1997","journal-title":"Phys. Rev. Lett."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"607","DOI":"10.1007\/s10910-016-0698-4","article-title":"Additive self-similar approximants","volume":"55","author":"Gluzman","year":"2017","journal-title":"J. Math. Chem."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/j.physleta.2012.11.005","article-title":"Self-similar continued root approximants","volume":"377","author":"Gluzman","year":"2012","journal-title":"Phys. Lett."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"3983","DOI":"10.1103\/PhysRevE.55.3983","article-title":"Algebraic self-similar renormalization in theory of critical phenomena","volume":"55","author":"Gluzman","year":"1997","journal-title":"Phys. Rev. E"},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Gluzman, S. (2020). Pad\u00e9 and post-Pad\u00e9 approximations for critical phenomena. Symmetry, 12.","DOI":"10.3390\/sym12101600"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"5839","DOI":"10.1063\/1.446611","article-title":"Perturbation theory for a polymer chain with excluded volume interaction","volume":"80","author":"Muthukumar","year":"1984","journal-title":"J. Chem. Phys."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"460","DOI":"10.1063\/1.452586","article-title":"Expansion of a polymer chain with excluded volume interaction","volume":"86","author":"Muthukumar","year":"1987","journal-title":"J. Chem. Phys."},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Grosberg, A.Y., and Khokhlov, A.R. (1994). Statistical Physics of Macromolecules, AIP Press.","DOI":"10.1063\/1.4823390"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1016\/S0370-1573(02)00219-3","article-title":"Critical phenomena and renormalization-group theory","volume":"368","author":"Pelissetto","year":"2002","journal-title":"Phys. Rep."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"661","DOI":"10.1007\/BF02178552","article-title":"Critical exponents, hyperscaling, and universal amplitude ratios for two- and three-dimensional self-avoiding walks","volume":"80","author":"Li","year":"1995","journal-title":"J. Stat. Phys."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"055702","DOI":"10.1103\/PhysRevLett.104.055702","article-title":"Accurate estimate of the critical exponent for self-avoiding walks via a fast implementation of the pivot algorithm","volume":"104","author":"Clisby","year":"2010","journal-title":"Phys. Rev. Lett."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"1037","DOI":"10.1007\/s10955-005-7004-3","article-title":"Correction-to-scaling exponents for two-dimensional self-avoiding walks","volume":"120","author":"Caracciolo","year":"2005","journal-title":"J. Stat. Phys."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"2425","DOI":"10.1103\/PhysRev.128.2425","article-title":"Gauge invariance and mass","volume":"128","author":"Schwinger","year":"1962","journal-title":"Phys. Rev."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1043","DOI":"10.1103\/PhysRevD.13.1043","article-title":"Strong-coupling calculations of lattice gauge theories: (1 + 1)-dimensional exercises","volume":"13","author":"Banks","year":"1976","journal-title":"Phys. Rev. D"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"2270","DOI":"10.1103\/PhysRevD.13.2270","article-title":"Lattice gauge theory calculations in 1+1 dimensions and the approach to the continuum limit","volume":"13","author":"Carrol","year":"1976","journal-title":"Phys. Rev. D"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"7231","DOI":"10.1103\/PhysRevD.53.7231","article-title":"Chiral perturbation theory in the Schwinger model","volume":"53","author":"Vary","year":"1996","journal-title":"Phys. Rev. D"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"383","DOI":"10.1016\/0370-2693(96)00695-8","article-title":"The Schwinger mass in the massive Schwinger model","volume":"382","author":"Adam","year":"1996","journal-title":"Phys. Lett. B"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"034508","DOI":"10.1103\/PhysRevD.62.034508","article-title":"A new finite-lattice study of the massive Schwinger model","volume":"62","author":"Striganesh","year":"2000","journal-title":"Phys. Rev. D"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1103\/PhysRevD.56.55","article-title":"Series expansions for the massive Schwinger model in Hamiltonian lattice theory","volume":"56","author":"Hamer","year":"1997","journal-title":"Phys. Rev. D"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/0003-4916(76)90280-3","article-title":"More about the massive Schwinger model","volume":"101","author":"Coleman","year":"1987","journal-title":"Ann. Phys."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/0550-3213(77)90334-0","article-title":"Lattice model calculations for SU(2) Yang-Mills theory in 1+1 dimensions","volume":"121","author":"Hamer","year":"1977","journal-title":"Nucl. Phys. B"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"044109","DOI":"10.1063\/1.3679657","article-title":"Robust interpolation between weak-and strong-correlation regimes of quantum systems","volume":"136","author":"Cioslowski","year":"2012","journal-title":"J. Chem. Phys."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1103\/PhysRevA.58.96","article-title":"Self-similar interpolation in quantum mechanics","volume":"58","author":"Yukalov","year":"1998","journal-title":"Phys. Rev. A"},{"key":"ref_41","first-page":"659","article-title":"Bose-Einstein Condensation of Trapped Atomic Gases","volume":"11","author":"Courteille","year":"2001","journal-title":"Laser Phys."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"1231","DOI":"10.1103\/PhysRev.184.1231","article-title":"Anharmonic oscillator","volume":"184","author":"Bender","year":"1969","journal-title":"Phys. Rev."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1016\/0370-1573(78)90097-2","article-title":"Quantum theory of anharmonic oscillators: Energy levels of a single and a pair of coupled oscillators with quartic coupling","volume":"43","author":"Hioe","year":"1978","journal-title":"Phys. Rep."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1023\/A:1019995830014","article-title":"A library of extended high-temperature expansions of basic observables for the spin-S Ising models on two- and three-dimensional lattices","volume":"109","author":"Butera","year":"2002","journal-title":"J. Stat. Phys."},{"key":"ref_45","unstructured":"Baxter, R.J. (1982). Exactly Solved Models in Statistical Mechanics, Academic."},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Andrianov, I., Gluzman, S., and Mityushev, V. (2021). Critical Index for Conductivity, Elasticity, Superconductivity. Results and Methods. Mechanics and Physics of Structured Media, Elsevier.","DOI":"10.1016\/B978-0-32-390543-5.00012-8"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"2477","DOI":"10.1103\/PhysRevLett.57.2477","article-title":"Diffusion and long-time tails in a two-dimensional site-percolation model","volume":"57","author":"Nieuwenhuizen","year":"1986","journal-title":"Phys. Rev. Lett."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1016\/0375-9601(87)90482-8","article-title":"Velocity auto-correlation functions in a 2d lattice Lorentz gas: Comparison of theory and computer simulation","volume":"121","author":"Frenkel","year":"1987","journal-title":"Phys. Lett."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1016\/S0378-4371(98)00435-X","article-title":"Conductivity exponent and backbone dimension in 2d percolation","volume":"262","author":"Grassberger","year":"1999","journal-title":"Phys. A"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"085001","DOI":"10.1088\/1751-8121\/aa5664","article-title":"Percolation of disordered jammed sphere packings","volume":"50","author":"Ziff","year":"2017","journal-title":"J. Phys. A Math. Theor."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"574","DOI":"10.1103\/RevModPhys.45.574","article-title":"Percolation and Conduction","volume":"45","author":"Kirkpatrick","year":"1973","journal-title":"Rev. Mod. Phys."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"165901","DOI":"10.1103\/PhysRevLett.96.165901","article-title":"Localization transition of the three-dimensional Lorenz model and continuum percolation","volume":"96","author":"Hofling","year":"2006","journal-title":"Phys. Rev. Lett."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1140\/epjst\/e2010-01313-1","article-title":"The localization transition of the two-dimensional Lorenz model","volume":"189","author":"Bauer","year":"2010","journal-title":"Eur. Phys. J. Spec. Top."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1080\/00018739000101501","article-title":"The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models","volume":"39","author":"Clerc","year":"1990","journal-title":"Adv. Phys."},{"key":"ref_55","unstructured":"Adler, P.M. (1992). Porous Media. Geometry and Transport, Butterworth-Heinemann."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1007\/s00707-005-0293-4","article-title":"Stokes flow through a channel with wavy walls","volume":"182","author":"Malevich","year":"2006","journal-title":"Acta Mech."},{"key":"ref_57","doi-asserted-by":"crossref","unstructured":"Gluzman, S. (2020). Nonlinear approximations to critical and relaxation processes. Axioms, 9.","DOI":"10.20944\/preprints202009.0141.v1"},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1017\/S0022112072002435","article-title":"The determination of the bulk stress in a suspension of spherical to order c2","volume":"56","author":"Batchelor","year":"1972","journal-title":"J. Fluid Mech."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"567","DOI":"10.1063\/1.465782","article-title":"The rheological behavior of concentrated colloidal dispersions","volume":"99","author":"Brady","year":"1993","journal-title":"J. Chem. Phys."},{"key":"ref_60","first-page":"193","article-title":"The Newtonian viscosity of a moderately dense suspensions","volume":"102","author":"Wajnryb","year":"1997","journal-title":"Adv. Chem. Phys."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"1428","DOI":"10.1103\/PhysRevLett.85.1428","article-title":"Particle dynamics in sheared granular matter","volume":"85","author":"Losert","year":"2000","journal-title":"Phys. Rev. Lett."},{"key":"ref_62","first-page":"148","article-title":"Physical properties of macroscopically inhomogeneous media","volume":"46","author":"Bergman","year":"1992","journal-title":"Solid State Phys."},{"key":"ref_63","unstructured":"McPhedran, R., Gluzman, S., Mityushev, V., and Rylko, N. (2020). Conductivity and elasticity of graphene-type composites. 2D and Quasi-2D Composite and Nano Composite Materials, Properties and Photonic Applications, Elsevier. Chapter 8."},{"key":"ref_64","first-page":"207","article-title":"Transport properties of regular array of cylinders","volume":"369","author":"Perrins","year":"1979","journal-title":"Proc. R. Soc. A"},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"1457","DOI":"10.1080\/00268970902942250","article-title":"The equation of state of the hard-disc fluid revisited","volume":"107","author":"Mulero","year":"2009","journal-title":"Mol. Phys."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"4622","DOI":"10.1063\/1.470649","article-title":"An accurate and simple equation of state for hard disks","volume":"103","author":"Santos","year":"1995","journal-title":"J. Chem. Phys."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1007\/s10955-005-8080-0","article-title":"Ninth and tenth order virial coefficients for hard spheres in D dimensions","volume":"122","author":"Clisby","year":"2006","journal-title":"J. Stat. Phys."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"084502","DOI":"10.1063\/1.3558779","article-title":"On the relation between virial coefficients and the close-packing of hard disks and hard spheres","volume":"134","author":"Maestre","year":"2011","journal-title":"J. Chem. Phys."}],"container-title":["Axioms"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2075-1680\/10\/3\/162\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,16]],"date-time":"2024-07-16T03:32:24Z","timestamp":1721100744000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2075-1680\/10\/3\/162"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7,26]]},"references-count":68,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2021,9]]}},"alternative-id":["axioms10030162"],"URL":"https:\/\/doi.org\/10.3390\/axioms10030162","relation":{},"ISSN":["2075-1680"],"issn-type":[{"value":"2075-1680","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,7,26]]}}}