{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T19:14:10Z","timestamp":1740165250622,"version":"3.37.3"},"reference-count":50,"publisher":"MDPI AG","issue":"1","license":[{"start":{"date-parts":[[2021,2,5]],"date-time":"2021-02-05T00:00:00Z","timestamp":1612483200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Department of Science and Technology and National Research Foundation, Republic of South Africa Center of Excellence in Mathematical and Statistical Sciences (DST-NRF COE-MaSS) Doctoral Bursary","award":["BA-2019-035"]},{"name":"National Research Foundation (NRF), South Africa","award":["119903"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Axioms"],"abstract":"In this paper, we study a schematic approximation of solutions of a split null point problem for a finite family of maximal monotone operators in real Hilbert spaces. We propose an iterative algorithm that does not depend on the operator norm which solves the split null point problem and also solves a generalized mixed equilibrium problem. We prove a strong convergence of the proposed algorithm to a common solution of the two problems. We display some numerical examples to illustrate our method. Our result improves some existing results in the literature.<\/jats:p>","DOI":"10.3390\/axioms10010016","type":"journal-article","created":{"date-parts":[[2021,2,5]],"date-time":"2021-02-05T08:34:02Z","timestamp":1612514042000},"page":"16","source":"Crossref","is-referenced-by-count":1,"title":["A Strong Convergence Theorem for Split Null Point Problem and Generalized Mixed Equilibrium Problem in Real Hilbert Spaces"],"prefix":"10.3390","volume":"10","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-4451-2126","authenticated-orcid":false,"given":"Olawale Kazeem","family":"Oyewole","sequence":"first","affiliation":[{"name":"School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 4001, South Africa"},{"name":"DST-NRF Center of Excellence in Mathematical and Statistical Sciences (CoE-MaSS), Johannesburg 2001, South Africa"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0389-7469","authenticated-orcid":false,"given":"Oluwatosin Temitope","family":"Mewomo","sequence":"additional","affiliation":[{"name":"School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Durban 4001, South Africa"}]}],"member":"1968","published-online":{"date-parts":[[2021,2,5]]},"reference":[{"key":"ref_1","first-page":"123","article-title":"From optimization and variational inequalities to equilibrium problems","volume":"63","author":"Blum","year":"1994","journal-title":"Math. Stud."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"3307","DOI":"10.1016\/j.na.2008.04.035","article-title":"A new method for solving equilibrium problem, fixed point problem and variational inequality problem with application to optimization","volume":"70","author":"Chang","year":"2009","journal-title":"Nonlinear Anal."},{"key":"ref_3","unstructured":"Nguyen, V.T. (2018). Golden Ratio Algorithms for Solving Equilibrium Problems in Hilbert Spaces. arXiv."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1146","DOI":"10.3906\/mat-1911-83","article-title":"An extragradient algorithm for split generalized equilibrium problem and the set of fixed points of quasi-\u03c6-nonexpansive mappings in Banach spaces","volume":"44","author":"Oyewole","year":"2020","journal-title":"Turkish J. Math."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Alakoya, T.O., Taiwo, A., Mewomo, O.T., and Cho, Y.J. (2020). An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings. Ann. Univ. Ferrara Sez. VII Sci. Mat.","DOI":"10.1007\/s11565-020-00354-2"},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Alakoya, T.O., Jolaoso, L.O., and Mewomo, O.T. (2020). Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems. Optimization.","DOI":"10.1080\/02331934.2020.1723586"},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Khan, S.H., Alakoya, T.O., and Mewomo, O.T. (2020). Relaxed projection methods with self-adaptive step size for solving variational inequality and fixed point problems for an infinite family of multivalued relatively nonexpansive mappings in Banach spaces. Math. Comput. Appl., 25.","DOI":"10.3390\/mca25030054"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"3897","DOI":"10.1016\/j.na.2007.10.025","article-title":"A general iterative method for equilibrium problem and fixed point problem in Hilbert spaces","volume":"69","author":"Qin","year":"2008","journal-title":"Nonlinear Anal."},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Oyewole, O.K., Abass, H.A., and Mewomo, O.T. (2020). Strong convergence algorithm for a fixed point constraint split null point problem. Rend. Circ. Mat. Palermo II.","DOI":"10.1007\/s12215-020-00505-6"},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Jolaoso, L.O., Alakoya, T.O., Taiwo, A., and Mewomo, O.T. (2020). Inertial extragradient method via viscosity approximation approach for solving Equilibrium problem in Hilbert space. Optimization.","DOI":"10.1080\/02331934.2020.1716752"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1186\/1687-1812-2013-240","article-title":"Hybrid extragradient method for generalized mixed equilibrium problem and fixed point problems in Hilbert space","volume":"2013","author":"Li","year":"2013","journal-title":"Fixed Point Theory Appl."},{"key":"ref_12","first-page":"1","article-title":"A general iterative method for finding common fixed point of finite family of demicontractive mappings with accretive variational inequality problems in Banach spaces","volume":"27","author":"Alakoya","year":"2020","journal-title":"Nonlinear Stud."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Aremu, K.O., Izuchukwu, C., Ogwo, G.N., and Mewomo, O.T. (2020). Multi-step Iterative algorithm for minimization and fixed point problems in p-uniformly convex metric spaces. J. Ind. Manag. Optim.","DOI":"10.3934\/jimo.2020063"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1016\/j.cam.2007.02.022","article-title":"A hybrid iterative scheme for mixed equilibrium problems and fixed point problems","volume":"214","author":"Ceng","year":"2008","journal-title":"J. Comput. Appl. Math."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1007\/BF02614504","article-title":"Equilibrium programming using proximal-like algorithm","volume":"78","author":"Flam","year":"1997","journal-title":"Math. Programm."},{"key":"ref_16","first-page":"117","article-title":"Equilibrium programming in Hilbert spaces","volume":"6","author":"Combettes","year":"2005","journal-title":"J. Nonlinear Convex Anal."},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Izuchukwu, C., Ogwo, G.N., and Mewomo, O.T. (2020). An Inertial Method for solving Generalized Split Feasibility Problems over the solution set of Monotone Variational Inclusions. Optimization.","DOI":"10.1080\/02331934.2020.1808648"},{"key":"ref_18","first-page":"19","article-title":"A subgradient extragradient algorithm for solving split equilibrium and fixed point problems in reflexive Banach spaces","volume":"2020","author":"Oyewole","year":"2020","journal-title":"J. Nonlinear Funct. Anal."},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Taiwo, A., Alakoya, T.O., and Mewomo, O.T. (2020). Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Banach spaces. Numer. Algorithms.","DOI":"10.1007\/s11075-020-00937-2"},{"key":"ref_20","first-page":"1381","article-title":"On generalized mixed equilibrium problem with \u03b1-\u03b2-\u03bc bifunction and \u03bc-\u03c4 monotone mapping","volume":"21","author":"Taiwo","year":"2020","journal-title":"J. Nonlinear Convex Anal."},{"key":"ref_21","first-page":"389689","article-title":"Inertial-type algorithm for solving split common fixed-point problem in Banach spaces","volume":"2014","author":"Taiwo","year":"2014","journal-title":"J. Sci. Comput."},{"key":"ref_22","first-page":"154","article-title":"Regularisation d\u2019inequations variationelles par approximations successives","volume":"4","author":"Martinet","year":"1970","journal-title":"Rev. Franaise Inf. Rech. Oper."},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Alakoya, T.O., Jolaoso, L.O., and Mewomo, O.T. (2020). A self adaptive inertial algorithm for solving split variational inclusion and fixed point problems with applications. J. Ind. Manag. Optim.","DOI":"10.1007\/s40314-019-1014-2"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1515\/dema-2020-0013","article-title":"Two modifications of the inertial Tseng extragradient method with self-adaptive step size for solving monotone variational inequality problems","volume":"53","author":"Alakoya","year":"2020","journal-title":"Demonstr. Math."},{"key":"ref_25","first-page":"427","article-title":"Weak convergence on a splitting algorithm in Hilbert spaces","volume":"7","author":"Cho","year":"2017","journal-title":"J. Appl. Anal. Comput."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"975","DOI":"10.2989\/16073606.2019.1593255","article-title":"Iterative algorithm for a family of monotone inclusion problems in CAT(0) spaces","volume":"43","author":"Dehghan","year":"2020","journal-title":"Quaest. Math."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1007\/s00025-020-01306-0","article-title":"Fast and simple Bregman projection methods for solving variational inequalities and related problems in Banach spaces","volume":"75","author":"Gibali","year":"2020","journal-title":"Results Math."},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Godwin, E.C., Izuchukwu, C., and Mewomo, O.T. (2020). An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces. Boll. Unione Mat. Ital.","DOI":"10.1007\/s40574-020-00272-3"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"193","DOI":"10.4995\/agt.2019.10635","article-title":"A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space","volume":"20","author":"Izuchukwu","year":"2019","journal-title":"Appl. Gen. Topol."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"475","DOI":"10.1007\/s12215-019-00415-2","article-title":"Viscosity iterative techniques for approximating a common zero of monotone operators in an Hadamard space","volume":"69","author":"Izuchukwu","year":"2020","journal-title":"Rend. Circ. Mat. Palermo II"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11784-020-00834-0","article-title":"A New Method for Solving Split Variational Inequality Problems without Co-coerciveness","volume":"22","author":"Izuchukwu","year":"2020","journal-title":"J. Fixed Point Theory Appl."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"744","DOI":"10.1007\/s10957-020-01672-3","article-title":"Strong convergence theorem for solving pseudo-monotone variational inequality problem using projection method in a reflexive Banach space","volume":"185","author":"Jolaoso","year":"2020","journal-title":"J. Optim. Theory Appl."},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Jolaoso, L.O., Oyewole, O.K., Aremu, K.O., and Mewomo, O.T. (2020). A new efficient algorithm for finding common fixed points of multivalued demicontractive mappings and solutions of split generalized equilibrium problems in Hilbert spaces. Int. J. Comput. Math.","DOI":"10.1080\/00207160.2020.1856823"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1007\/s40314-019-1014-2","article-title":"A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem","volume":"39","author":"Jolaoso","year":"2020","journal-title":"Comput. Appl. Math."},{"key":"ref_35","first-page":"19","article-title":"On approximation of common solution of finite family of mixed equilibrium problems involving \u03bc-\u03b1 relaxed monotone mapping in a Banach space","volume":"81","author":"Oyewole","year":"2019","journal-title":"Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1007\/s11075-017-0449-z","article-title":"Iterative algorithms for solving fixed point problems and variational inequalities with uniformly continuous monotone operators","volume":"79","author":"Shehu","year":"2018","journal-title":"Numer. Algorithms"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"683","DOI":"10.22436\/jnsa.011.05.09","article-title":"Finding a solution of split null point of the sum of monotone operators without prior knowledge of operator norms in Hilbert space","volume":"11","author":"Suwannaprapa","year":"2018","journal-title":"J. Nonlinear Sci. Appl."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1007\/BF02142692","article-title":"A multiprojection algorithm using Bregman projections in product space","volume":"8","author":"Censor","year":"1994","journal-title":"Numer. Algorithms"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1088\/0266-5611\/18\/2\/310","article-title":"Iterative oblique projection onto convex sets and split feasibility problem","volume":"18","author":"Bryne","year":"2002","journal-title":"Inverse Probl."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"2353","DOI":"10.1088\/0031-9155\/51\/10\/001","article-title":"A unified approach for inversion problems in intensity-modulated radiation therapy","volume":"51","author":"Censor","year":"2006","journal-title":"Phys. Med. Biol."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"085004","DOI":"10.1088\/0266-5611\/28\/8\/085004","article-title":"Solving the split feasibility problem without prior knowledge of matrix norms","volume":"28","author":"Lopez","year":"2012","journal-title":"Inverse Probl."},{"key":"ref_42","first-page":"759","article-title":"Weak and strong convergence of algorithms for the split common null point problem","volume":"13","author":"Bryne","year":"2012","journal-title":"J. Nonlinear Convex Anal."},{"key":"ref_43","doi-asserted-by":"crossref","unstructured":"Bauschke, H.H., and Combettes, P.L. (2011). Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer.","DOI":"10.1007\/978-1-4419-9467-7"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1155\/2016\/2371857","article-title":"The viscosity approximation forward-backward splitting method for zeros of the sum of monotone operators","volume":"2016","author":"Boikanyo","year":"2016","journal-title":"Abstr. Appl. Anal."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"360","DOI":"10.1007\/s10957-011-9837-z","article-title":"Averaged mappings and the gradient-projection algorithm","volume":"150","author":"Xu","year":"2011","journal-title":"J. Optim. Theory. Appl."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1090\/S0002-9947-1970-0282272-5","article-title":"On the maximality of sums of nonlinear monotone operators","volume":"149","author":"Rockafellar","year":"1970","journal-title":"Trans. Amer. Math. Soc."},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Taiwo, A., Owolabi, A.O.-E., Jolaoso, L.O., Mewomo, O.T., and Gibali, A. (2020). A new approximation scheme for solving various split inverse problems. Afr. Mat.","DOI":"10.1007\/s13370-020-00832-y"},{"key":"ref_48","doi-asserted-by":"crossref","unstructured":"Taiwo, A., Jolaoso, L.O., and Mewomo, O.T. (2020). Viscosity approximation method for solving the multiple-set split equality common fixed-point problems for quasi-pseudocontractive mappings in Hilbert Spaces. J. Ind. Manag. Optim.","DOI":"10.3934\/jimo.2020092"},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"127","DOI":"10.36045\/bbms\/1590199308","article-title":"A viscosity iterative algorithm for a family of monotone inclusion problems in an Hadamard space","volume":"27","author":"Ogwo","year":"2020","journal-title":"Bull. Belg. Math. Soc. Simon Stevin"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1112\/S0024610702003332","article-title":"Iterative algorithms for nonlinear operators","volume":"66","author":"Xu","year":"2002","journal-title":"J. Lond. Math. Soc."}],"container-title":["Axioms"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2075-1680\/10\/1\/16\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,7]],"date-time":"2025-01-07T06:13:19Z","timestamp":1736230399000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2075-1680\/10\/1\/16"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,2,5]]},"references-count":50,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2021,3]]}},"alternative-id":["axioms10010016"],"URL":"https:\/\/doi.org\/10.3390\/axioms10010016","relation":{},"ISSN":["2075-1680"],"issn-type":[{"type":"electronic","value":"2075-1680"}],"subject":[],"published":{"date-parts":[[2021,2,5]]}}}