{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,11]],"date-time":"2025-04-11T05:01:15Z","timestamp":1744347675128,"version":"3.37.3"},"reference-count":38,"publisher":"MDPI AG","issue":"3","license":[{"start":{"date-parts":[[2022,3,18]],"date-time":"2022-03-18T00:00:00Z","timestamp":1647561600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Algorithms"],"abstract":"In the field of agricultural research, Machine Learning (ML) has been used to increase agricultural productivity and minimize its environmental impact, proving to be an essential technique to support decision making. Accurate harvest time prediction is a challenge for fruit production in a sustainable manner, which could eventually reduce food waste. Linear models have been used to estimate period duration; however, they present variability when used to estimate the chronological time of apple tree stages. This study proposes the PredHarv model, which is a machine learning model that uses Recurrent Neural Networks (RNN) to predict the start date of the apple harvest, given the weather conditions related to the temperature expected for the period. Predictions are made from the phenological phase of the beginning of flowering, using a multivariate approach, based on the time series of phenology and meteorological data. The computational model contributes to anticipating information about the harvest date, enabling the grower to better plan activities, avoiding costs, and consequently improving productivity. We developed a prototype of the model and performed experiments with real datasets from agricultural institutions. We evaluated the metrics, and the results obtained in evaluation scenarios demonstrate that the model is efficient, has good generalizability, and is capable of improving the accuracy of the prediction results.<\/jats:p>","DOI":"10.3390\/a15030095","type":"journal-article","created":{"date-parts":[[2022,3,21]],"date-time":"2022-03-21T01:25:00Z","timestamp":1647825900000},"page":"95","source":"Crossref","is-referenced-by-count":13,"title":["Prediction of Harvest Time of Apple Trees: An RNN-Based Approach"],"prefix":"10.3390","volume":"15","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-6956-7588","authenticated-orcid":false,"given":"Tiago","family":"Boechel","sequence":"first","affiliation":[{"name":"Applied Computing Graduate Program, Universidade do Vale do Rio dos Sinos, Av. Unisinos, 950, Cristo Rei, S\u00e3o Leopoldo 93022-000, Brazil"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0270-4661","authenticated-orcid":false,"given":"Lucas Micol","family":"Policarpo","sequence":"additional","affiliation":[{"name":"Applied Computing Graduate Program, Universidade do Vale do Rio dos Sinos, Av. Unisinos, 950, Cristo Rei, S\u00e3o Leopoldo 93022-000, Brazil"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6488-7654","authenticated-orcid":false,"given":"Gabriel de Oliveira","family":"Ramos","sequence":"additional","affiliation":[{"name":"Applied Computing Graduate Program, Universidade do Vale do Rio dos Sinos, Av. Unisinos, 950, Cristo Rei, S\u00e3o Leopoldo 93022-000, Brazil"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5080-7660","authenticated-orcid":false,"given":"Rodrigo","family":"da Rosa Righi","sequence":"additional","affiliation":[{"name":"Applied Computing Graduate Program, Universidade do Vale do Rio dos Sinos, Av. Unisinos, 950, Cristo Rei, S\u00e3o Leopoldo 93022-000, Brazil"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3822-9348","authenticated-orcid":false,"given":"Dhananjay","family":"Singh","sequence":"additional","affiliation":[{"name":"Department of Electronics Engineering, Hankuk University of Foreign Studies, Yongin 17035, Korea"}]}],"member":"1968","published-online":{"date-parts":[[2022,3,18]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Zhang, X. (2012). Apple phenology in subtropical climate conditions. Phenology and Climate Change, InTech Europe.","DOI":"10.5772\/2146"},{"key":"ref_2","first-page":"291","article-title":"O clima como fator determinante da fenologia das plantas","volume":"Volume 1","author":"Bergamaschi","year":"2007","journal-title":"Fenologia: Ferramenta Para Conserva\u00e7\u00e3o, Melhoramento e Manejo de Recursos Vegetais Arb\u00f3reos"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1016\/j.envsoft.2014.11.017","article-title":"A spatially explicit land surface phenology data product for science, monitoring and natural resources management applications","volume":"64","author":"Broich","year":"2015","journal-title":"Environ. Model. Softw."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"105103","DOI":"10.1016\/j.compag.2019.105103","article-title":"A framework for predicting soft-fruit yields and phenology using embedded, networked microsensors, coupled weather models and machine-learning techniques","volume":"168","author":"Lee","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.agwat.2017.09.004","article-title":"Essential irrigation and the economics of strawberries in a temperate climate","volume":"194","author":"Morris","year":"2017","journal-title":"Agric. Water Manag."},{"key":"ref_6","unstructured":"Mitchell, T.M. (1997). Machine Learning, McGraw-Hill. Available online: https:\/\/www.cin.ufpe.br\/~cavmj\/Machine%20-%20Learning%20-%20Tom%20Mitchell.pdf."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"100045","DOI":"10.1016\/j.dibe.2021.100045","article-title":"Machine learning in construction: From shallow to deep learning","volume":"6","author":"Xu","year":"2021","journal-title":"Dev. Built Environ."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"100370","DOI":"10.1016\/j.cosrev.2021.100370","article-title":"Role of machine learning in medical research: A survey","volume":"40","author":"Garg","year":"2021","journal-title":"Comput. Sci. Rev."},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Darmawahyuni, A., Nurmaini, S., Caesarendra, W., Bhayyu, V., Rachmatullah, M.N. (2019). Deep learning with a recurrent network structure in the sequence modeling of imbalanced data for ECG-rhythm classifier. Algorithms, 12.","DOI":"10.3390\/a12060118"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"20200097","DOI":"10.1098\/rsta.2020.0097","article-title":"Can deep learning beat numerical weather prediction?","volume":"379","author":"Schultz","year":"2021","journal-title":"Philos. Trans. R. Soc. A"},{"key":"ref_11","first-page":"883","article-title":"Using machine learning to develop an autoverification system in a clinical biochemistry laboratory","volume":"1","author":"Wang","year":"2020","journal-title":"Clin. Chem. Lab. Med. (CCLM)"},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Liakos, K.G., Busato, P., Moshou, D., Pearson, S., and Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18.","DOI":"10.3390\/s18082674"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1016\/j.compag.2018.02.016","article-title":"Deep learning in agriculture: A survey","volume":"147","author":"Kamilaris","year":"2018","journal-title":"Comput. Electron. Agric."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/j.compag.2018.10.024","article-title":"Forecasting yield by integrating agrarian factors and machine learning models: A survey","volume":"155","author":"Elavarasan","year":"2018","journal-title":"Comput. Electron. Agric."},{"key":"ref_15","first-page":"183","article-title":"A role of computer vision in fruits and vegetables among various horticulture products of agriculture fields: A survey","volume":"7","author":"Tripathi","year":"2020","journal-title":"Inf. Process. Agric."},{"key":"ref_16","first-page":"194","article-title":"Unidades de frio e de Calor para a Brota\u00e7\u00e3o de Macieira (Malus domestica, Borck), Gala e Fuji","volume":"6","author":"Putti","year":"2000","journal-title":"Rev. Bras. Agroci\u00eancia"},{"key":"ref_17","first-page":"97","article-title":"Forecasting different phenological phases of apple using artificial neural network","volume":"6","author":"Yazdanpanah","year":"2010","journal-title":"J. Res. Agric. Sci."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1515\/johr-2017-0006","article-title":"Prediction of the harvesting time for four apple cultivars on the basis of beginning of flowering and attaining of t-stage of fruitlets and dependence of diameter of fruitlets at t-stage and fruits at ripening stage","volume":"25","author":"Blazek","year":"2017","journal-title":"J. Hortic. Res."},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Boechel, T., Policarpo, L.M., Righi, R., and Ramos, G.d.O. (2021, January 22\u201326). Fuzzy Time Series for Predicting Phenological Stages of Apple Trees. Proceedings of the SAC 2021\u201436th ACM\/SIGAPP Symposium On Applied Computing, Gwangju, Korea.","DOI":"10.1145\/3412841.3441968"},{"key":"ref_20","first-page":"777","article-title":"Research on Dynamic Forecast of Flowering Period Based on Multivariable LSTM and Ensemble Learning Classification Task","volume":"11","author":"Chen","year":"2020","journal-title":"Agric. Sci."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1007\/s00484-020-01903-2","article-title":"Timing of phenological stages for apple and pear trees under climate change in a temperate-continental climate","volume":"64","author":"Chitu","year":"2020","journal-title":"Int. J. Biometeorol."},{"key":"ref_22","first-page":"292","article-title":"Flowering phenology and the interrelations between phenological stages in apple trees (Malus domestica Borkh.) as influenced by the Nordic climate","volume":"67","author":"Rivero","year":"2017","journal-title":"Acta Agric. Scand. Sect. B\u2014Soil Plant Sci."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.agrformet.2017.03.021","article-title":"A global evaluation of apple flowering phenology models for climate adaptation","volume":"240","author":"Darbyshire","year":"2017","journal-title":"Agric. For. Meteorol."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"107702","DOI":"10.1016\/j.agrformet.2019.107702","article-title":"Detecting temporal changes in the temperature sensitivity of spring phenology with global warming: Application of machine learning in phenological model","volume":"279","author":"Dai","year":"2019","journal-title":"Agric. For. Meteorol."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1297","DOI":"10.1007\/s00484-018-1534-2","article-title":"Machine learning modeling of plant phenology based on coupling satellite and gridded meteorological dataset","volume":"62","author":"Czernecki","year":"2018","journal-title":"Int. J. Biometeorol."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Haider, S.A., Naqvi, S.R., Akram, T., Umar, G.A., Shahzad, A., Sial, M.R., Khaliq, S., and Kamran, M. (2019). LSTM neural network based forecasting model for wheat production in Pakistan. Agronomy, 9.","DOI":"10.3390\/agronomy9020072"},{"key":"ref_27","unstructured":"Safa, B., Khalili, A., Teshnehlab, M., and Liaghat, A. (2004, January 10\u201315). Artificial neural networks application to predict wheat yield using climatic data. Proceedings of the 20th International Conference on IIPS. Iranian Meteorological Organization, Vienna, VA, USA."},{"key":"ref_28","first-page":"diab004","article-title":"Intercontinental prediction of soybean phenology via hybrid ensemble of knowledge-based and data-driven models","volume":"3","author":"McCormick","year":"2020","journal-title":"bioRxiv"},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Sabzi, S., Abbaspour-Gilandeh, Y., Garc\u00eda-Mateos, G., Ruiz-Canales, A., Molina-Mart\u00ednez, J.M., and Arribas, J.I. (2019). An automatic non-destructive method for the classification of the ripeness stage of red delicious apples in orchards using aerial video. Agronomy, 9.","DOI":"10.3390\/agronomy9020084"},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Khandelwal, P., Konar, J., and Brahma, B. (2020, January 22\u201323). Training RNN and it\u2019s variants using sliding window technique. Proceedings of the 2020 IEEE International Students\u2019 Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, India.","DOI":"10.1109\/SCEECS48394.2020.93"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Comput."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1590\/S0006-87051976000100019","article-title":"Temperatura-base para alface cultivar \u201cWhite Boston\u201d, em um sistema de unidades t\u00e9rmicas","volume":"35","author":"Brunini","year":"1976","journal-title":"Bragantia"},{"key":"ref_33","unstructured":"Arnold, C.Y. (1959, January 1). The determination and significance of the base temperature in a linear heat unit system. Proceedings of the American Society for Horticultural Science, Alexandria, VA, USA."},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Refaeilzadeh, P., Tang, L., and Liu, H. (2022, February 12). Cross-Validation. Available online: https:\/\/doi.org\/10.1007\/978-0-387-39940-9_565.","DOI":"10.1007\/978-0-387-39940-9_565"},{"key":"ref_35","unstructured":"Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., and Garnett, R. (2015). Efficient and Robust Automated Machine Learning. Advances in Neural Information Processing Systems, Curran Associates, Inc.. Available online: https:\/\/proceedings.neurips.cc\/paper\/2015\/hash\/11d0e6287202fced83f79975ec59a3a6-Abstract.html."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Jin, H., Song, Q., and Hu, X. (2019, January 4\u20138). Auto-Keras: An Efficient Neural Architecture Search System. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA.","DOI":"10.1145\/3292500.3330648"},{"key":"ref_37","first-page":"313","article-title":"Temperatura base inferior, soma t\u00e9rmica e fenologia de cultivares de videira e quivizeiro","volume":"18","author":"Anzanello","year":"2019","journal-title":"Rev. Ci\u00eancias Agroveterin\u00e1rias"},{"key":"ref_38","unstructured":"Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning, MIT Press. Available online: http:\/\/www.deeplearningbook.org."}],"container-title":["Algorithms"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1999-4893\/15\/3\/95\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,27]],"date-time":"2024-07-27T14:11:57Z","timestamp":1722089517000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1999-4893\/15\/3\/95"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,3,18]]},"references-count":38,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2022,3]]}},"alternative-id":["a15030095"],"URL":"https:\/\/doi.org\/10.3390\/a15030095","relation":{},"ISSN":["1999-4893"],"issn-type":[{"type":"electronic","value":"1999-4893"}],"subject":[],"published":{"date-parts":[[2022,3,18]]}}}