{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,13]],"date-time":"2024-08-13T23:40:11Z","timestamp":1723592411303},"reference-count":28,"publisher":"MDPI AG","issue":"9","license":[{"start":{"date-parts":[[2020,9,16]],"date-time":"2020-09-16T00:00:00Z","timestamp":1600214400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Algorithms"],"abstract":"Dimensionality reduction research in data envelopment analysis (DEA) has focused on subjective approaches to reduce dimensionality. Such approaches are less useful or attractive in practice because a subjective selection of variables introduces bias. A competing unbiased approach would be to use ensemble DEA scores. This paper illustrates that in addition to unbiased evaluations, the ensemble DEA scores result in unique rankings that have high entropy. Under restrictive assumptions, it is also shown that the ensemble DEA scores are normally distributed. Ensemble models do not require any new modifications to existing DEA objective functions or constraints, and when ensemble scores are normally distributed, returns-to-scale hypothesis testing can be carried out using traditional parametric statistical techniques.<\/jats:p>","DOI":"10.3390\/a13090232","type":"journal-article","created":{"date-parts":[[2020,9,16]],"date-time":"2020-09-16T14:30:12Z","timestamp":1600266612000},"page":"232","source":"Crossref","is-referenced-by-count":0,"title":["A Comparison of Ensemble and Dimensionality Reduction DEA Models Based on Entropy Criterion"],"prefix":"10.3390","volume":"13","author":[{"given":"Parag C.","family":"Pendharkar","sequence":"first","affiliation":[{"name":"Information Systems School of Business Administration, Pennsylvania State University, Harrisburg 777 West Harrisburg Pike, Middletown, PA 17057, USA"}]}],"member":"1968","published-online":{"date-parts":[[2020,9,16]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"429","DOI":"10.1016\/0377-2217(78)90138-8","article-title":"Measuring the efficiency of decision making units","volume":"2","author":"Charnes","year":"1978","journal-title":"Eur. J. Oper. Res."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.cie.2018.03.037","article-title":"Data envelopment analysis models for probabilistic classification","volume":"119","author":"Pendharkar","year":"2018","journal-title":"Comput. Ind. Eng."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1379","DOI":"10.1109\/TKDE.2005.155","article-title":"A data envelopment analysis-based approach for data preprocessing","volume":"17","author":"Pendharkar","year":"2005","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"369","DOI":"10.1016\/S0377-2217(97)00351-2","article-title":"A new approach for technical efficiency estimation in multiple output production","volume":"111","author":"Ruggiero","year":"1998","journal-title":"Eur. J. Oper. Res."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Cooper, W.W., Seiford, L.M., and Tone, K. (2007). Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA-Solver Software, Springer. [2nd ed.].","DOI":"10.1007\/978-0-387-45283-8"},{"key":"ref_6","first-page":"466","article-title":"Application of principal component analysis for parsimonious summarization of DEA inputs and\/or outputs","volume":"40","author":"Ueda","year":"1997","journal-title":"J. Oper. Res. Soc. Jpn."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1142\/S021962200500160X","article-title":"Impact assessment of input omisson on DEA","volume":"4","author":"Ruggiero","year":"2005","journal-title":"J. Inf. Technol. Decis. Mak."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.ejor.2006.02.048","article-title":"Stepwise selection of variables in data envelopment analysis: Procedures and managerial perspectives","volume":"180","author":"Wagner","year":"2007","journal-title":"Eur. J. Oper. Res."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1081\/SAC-100001865","article-title":"Testing restrictions in nonparameteric efficiency models","volume":"30","author":"Simar","year":"2001","journal-title":"Commun. Stat."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1007\/BF00157038","article-title":"Hypothesis tests using data envelopment analysis","volume":"7","author":"Banker","year":"1996","journal-title":"J. Prod. Anal."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"735","DOI":"10.1080\/02331934.2012.684354","article-title":"Variable reduction in data envelopment analysis","volume":"63","author":"Amirteimoori","year":"2012","journal-title":"Optimization"},{"key":"ref_12","first-page":"163","article-title":"Selecting inputs and outputs in data envelopment analysis by designing statistical experiments","volume":"52","author":"Morita","year":"2009","journal-title":"J. Oper. Res. Soc. Jpn."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"662","DOI":"10.1016\/j.ejor.2011.06.045","article-title":"Guidelines for using variable selection techniques in data envelopment analysis","volume":"215","author":"Nataraja","year":"2011","journal-title":"Eur. J. Oper. Res."},{"key":"ref_14","first-page":"151","article-title":"Ensemble based ranking of decision making units","volume":"51","author":"Pendharkar","year":"2013","journal-title":"Inf. Syst. Oper. Res."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1078","DOI":"10.1287\/mnsc.30.9.1078","article-title":"Some models for estimating technical and scale inefficiencies in data envelopment analysis","volume":"30","author":"Banker","year":"1984","journal-title":"Manag. Sci."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"527","DOI":"10.1016\/j.amc.2015.06.122","article-title":"On variable reductions in data envelopment analysis with an illustrative application to a gas company","volume":"270","author":"Toloo","year":"2015","journal-title":"Appl. Math. Comput."},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Ray, S.C. (2004). Data Envelopment Analysis: Theory and Techniques for Economics and Operations Research, Cambridge University Press.","DOI":"10.1017\/CBO9780511606731"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/0022-0531(78)90060-1","article-title":"Measuring the technical efficiency","volume":"19","author":"Fare","year":"1978","journal-title":"J. Econ. Theory"},{"key":"ref_19","unstructured":"Stewart, J. (2005). Multivariable Calculus: Concepts and Contexts, Thomson Learning. [3rd ed.]."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"5146","DOI":"10.1016\/j.eswa.2008.06.031","article-title":"Shannon\u2019s entropy for combining the efficiency results of different DEA models: Method and Application","volume":"36","author":"Zarepisheh","year":"2009","journal-title":"Expert Syst. Appl."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1571","DOI":"10.3390\/e16031571","article-title":"Increasing the discriminatory power of DEA Using Shannon\u2019s Entropy","volume":"16","author":"Xie","year":"2014","journal-title":"Entropy"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/j.jeconom.2008.12.014","article-title":"Maximum entropy autoregressive conditional heteroskedasticity model","volume":"150","author":"Park","year":"2009","journal-title":"J. Econom."},{"key":"ref_23","unstructured":"Kagan, A.M., Linik, Y.V., and Rao, C.R. (1973). Characterization Problems in Mathematical Statistics, Wiley."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"106550","DOI":"10.1016\/j.cie.2020.106550","article-title":"Cross efficiency evaluation of decision-making units using the maximum decisional efficiency principle","volume":"145","author":"Pendharkar","year":"2020","journal-title":"Comput. Ind. Eng."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1287\/mnsc.41.1.76","article-title":"Maximum decisional efficiency estimation principle","volume":"41","author":"Troutt","year":"1995","journal-title":"Manag. Sci."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1023\/A:1018989414181","article-title":"Derivation of the maximin efficiency ratio model from the maximum decisional efficiency principle","volume":"73","author":"Troutt","year":"1997","journal-title":"Ann. Oper. Res."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1023\/A:1018982707338","article-title":"Total factor efficiency\/productivity ratio fitting as an alternative to regression and canonical correlation models for performance data","volume":"74","author":"Troutt","year":"1997","journal-title":"Ann. Oper. Res."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"1265","DOI":"10.1287\/mnsc.39.10.1265","article-title":"Maximum likelihood, consistency and data envelopment analysis: A statistical foundation","volume":"39","author":"Banker","year":"1993","journal-title":"Manag. Sci."}],"container-title":["Algorithms"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1999-4893\/13\/9\/232\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,13]],"date-time":"2024-08-13T22:29:11Z","timestamp":1723588151000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1999-4893\/13\/9\/232"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,9,16]]},"references-count":28,"journal-issue":{"issue":"9","published-online":{"date-parts":[[2020,9]]}},"alternative-id":["a13090232"],"URL":"https:\/\/doi.org\/10.3390\/a13090232","relation":{},"ISSN":["1999-4893"],"issn-type":[{"type":"electronic","value":"1999-4893"}],"subject":[],"published":{"date-parts":[[2020,9,16]]}}}