{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T15:42:31Z","timestamp":1740152551950,"version":"3.37.3"},"reference-count":54,"publisher":"MDPI AG","issue":"3","license":[{"start":{"date-parts":[[2020,2,26]],"date-time":"2020-02-26T00:00:00Z","timestamp":1582675200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100002347","name":"Bundesministerium f\u00fcr Bildung und Forschung","doi-asserted-by":"publisher","award":["05K19RDB"],"id":[{"id":"10.13039\/501100002347","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Algorithms"],"abstract":"Approximation and uncertainty quantification methods based on Lagrange interpolation are typically abandoned in cases where the probability distributions of one or more system parameters are not normal, uniform, or closely related distributions, due to the computational issues that arise when one wishes to define interpolation nodes for general distributions. This paper examines the use of the recently introduced weighted Leja nodes for that purpose. Weighted Leja interpolation rules are presented, along with a dimension-adaptive sparse interpolation algorithm, to be employed in the case of high-dimensional input uncertainty. The performance and reliability of the suggested approach is verified by four numerical experiments, where the respective models feature extreme value and truncated normal parameter distributions. Furthermore, the suggested approach is compared with a well-established polynomial chaos method and found to be either comparable or superior in terms of approximation and statistics estimation accuracy.<\/jats:p>","DOI":"10.3390\/a13030051","type":"journal-article","created":{"date-parts":[[2020,2,27]],"date-time":"2020-02-27T08:21:16Z","timestamp":1582791676000},"page":"51","source":"Crossref","is-referenced-by-count":2,"title":["Approximation and Uncertainty Quantification of Systems with Arbitrary Parameter Distributions Using Weighted Leja Interpolation"],"prefix":"10.3390","volume":"13","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-1264-1182","authenticated-orcid":false,"given":"Dimitrios","family":"Loukrezis","sequence":"first","affiliation":[{"name":"Institute for Accelerator Science and Electromagnetic Fields (TEMF), Technische Universit\u00e4t Darmstadt, 64289 Darmstadt, Germany"},{"name":"Centre for Computational Engineering, Technische Universit\u00e4t Darmstadt, 64289 Darmstadt, Germany"}]},{"given":"Herbert","family":"De Gersem","sequence":"additional","affiliation":[{"name":"Institute for Accelerator Science and Electromagnetic Fields (TEMF), Technische Universit\u00e4t Darmstadt, 64289 Darmstadt, Germany"},{"name":"Centre for Computational Engineering, Technische Universit\u00e4t Darmstadt, 64289 Darmstadt, Germany"}]}],"member":"1968","published-online":{"date-parts":[[2020,2,26]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1017\/S0962492900002804","article-title":"Monte Carlo and quasi-Monte Carlo methods","volume":"7","author":"Caflisch","year":"1998","journal-title":"Acta Numer."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"2058","DOI":"10.1214\/aos\/1069362310","article-title":"On latin hypercube sampling","volume":"24","author":"Loh","year":"1996","journal-title":"Ann. Stat."},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Le Ma\u00eetre, O.P., and Knio, O.M. (2010). Spectral Methods for Uncertainty Quantification: With Applications to Computational Fluid Dynamics, Springer Science & Business Media.","DOI":"10.1007\/978-90-481-3520-2"},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Xiu, D. (2010). Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press.","DOI":"10.1515\/9781400835348"},{"key":"ref_5","first-page":"317","article-title":"A stochastic collocation method for elliptic partial differential equations with random input data","volume":"2","author":"Nobile","year":"2010","journal-title":"SIAM Rev."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1023\/A:1018977404843","article-title":"High dimensional polynomial interpolation on sparse grids","volume":"12","author":"Barthelmann","year":"2000","journal-title":"Adv. Comput. Math."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"619","DOI":"10.1137\/S1064827501387826","article-title":"The Wiener-Askey polynomial chaos for stochastic differential equations","volume":"24","author":"Xiu","year":"2002","journal-title":"SIAM J. Sci. Comput."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.probengmech.2009.10.003","article-title":"An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis","volume":"25","author":"Blatman","year":"2010","journal-title":"Probab. Eng. Mech."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"2345","DOI":"10.1016\/j.jcp.2010.12.021","article-title":"Adaptive sparse polynomial chaos expansion based on least angle regression","volume":"230","author":"Blatman","year":"2011","journal-title":"J. Comput. Phys."},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Migliorati, G. (2013). Adaptive polynomial approximation by means of random discrete least squares. Numerical Mathematics and Advanced Applications - ENUMATH 2013, Springer.","DOI":"10.1007\/978-3-319-10705-9_54"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"A2643","DOI":"10.1137\/120890715","article-title":"Adaptive Smolyak Pseudospectral Approximations","volume":"35","author":"Conrad","year":"2013","journal-title":"SIAM J. Sci. Comput."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.cma.2012.03.019","article-title":"Sparse pseudospectral approximation method","volume":"229","author":"Constantine","year":"2012","journal-title":"Comput. Methods Appl. Mech. Eng."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1006\/jcph.2001.6889","article-title":"A Stochastic Projection Method for Fluid Flow: I. Basic Formulation","volume":"173","author":"Knio","year":"2001","journal-title":"J. Comput. Phys."},{"key":"ref_14","unstructured":"Loukrezis, D., and De Gersem, H. (2019). Adaptive Sparse Polynomial Chaos Expansions via Leja Interpolation. arXiv."},{"key":"ref_15","unstructured":"Bellman, R. (1957). Dynamic Programming, Princeton University Press."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"601","DOI":"10.1007\/s10208-013-9154-z","article-title":"High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs","volume":"14","author":"Chkifa","year":"2014","journal-title":"Found. Comput. Math."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"2411","DOI":"10.1137\/070680540","article-title":"An anisotropic sparse grid stochastic collocation method for partial differential equations with random input data","volume":"46","author":"Nobile","year":"2008","journal-title":"SIAM J. Numer. Anal."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"2449","DOI":"10.1016\/j.camwa.2015.12.045","article-title":"A dynamically adaptive sparse grids method for quasi-optimal interpolation of multidimensional functions","volume":"71","author":"Stoyanov","year":"2016","journal-title":"Comput. Math. Appl."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"877","DOI":"10.1137\/17M1123079","article-title":"Convergence of sparse collocation for functions with countably many Gaussian random variables","volume":"56","author":"Ernst","year":"2018","journal-title":"SIAM J. Numer. Anal."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1007\/BF01386223","article-title":"A method for numerical integration on an automatic computer","volume":"2","author":"Clenshaw","year":"1960","journal-title":"Numer. Math."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/0377-0427(95)00232-4","article-title":"Fully symmetric interpolatory rules for multiple integrals over infinite regions with Gaussian weight","volume":"71","author":"Genz","year":"1996","journal-title":"J. Comput. Appl. Math."},{"key":"ref_22","unstructured":"Burkardt, J. (2020, February 25). The Truncated Normal Distribution, 2014. Department of Scientific Computing, Florida State University. Available online: https:\/\/people.sc.fsu.edu\/~jburkardt\/presentations\/truncated_normal.pdf."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"682","DOI":"10.1016\/j.camwa.2012.12.004","article-title":"Fast construction of Fej\u00e9r and Clenshaw\u2013Curtis rules for general weight functions","volume":"65","author":"Sommariva","year":"2013","journal-title":"Comput. Math. Appl."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"395","DOI":"10.1137\/S1064827503424505","article-title":"Physical systems with random uncertainties: Chaos representations with arbitrary probability measure","volume":"26","author":"Soize","year":"2004","journal-title":"SIAM J. Sci. Comput."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1007\/s10915-005-9038-8","article-title":"Beyond Wiener-Askey expansions: Handling arbitrary PDFs","volume":"27","author":"Wan","year":"2006","journal-title":"J. Sci. Comput."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"901","DOI":"10.1137\/050627630","article-title":"Multi-element generalized polynomial chaos for arbitrary probability measures","volume":"28","author":"Wan","year":"2006","journal-title":"SIAM J. Sci. Comput."},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Eldred, M. (2009, January 4\u20137). Recent advances in non-intrusive polynomial chaos and stochastic collocation methods for uncertainty analysis and design. Proceedings of the 50th AIAA\/ASME\/ASCE\/AHS\/ASC Structures, Structural Dynamics, and Materials Conference 17th AIAA\/ASME\/AHS Adaptive Structures Conference 11th AIAA, Palm Springs, CA, USA.","DOI":"10.2514\/6.2009-2274"},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Eldred, M., and Burkardt, J. (2009, January 5\u20138). Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification. Proceedings of the 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, FL, USA.","DOI":"10.2514\/6.2009-976"},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Ng, L.W.T., and Eldred, M. (2012, January 23\u201326). Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic collocation. Proceedings of the 53rd AIAA\/ASME\/ASCE\/AHS\/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA\/ASME\/AHS Adaptive Structures Conference 14th AIAA, Honolulu, HI, USA.","DOI":"10.2514\/6.2012-1852"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"A2952","DOI":"10.1137\/140966368","article-title":"Adaptive Leja Sparse Grid Constructions for Stochastic Collocation and High-Dimensional Approximation","volume":"36","author":"Narayan","year":"2014","journal-title":"SIAM J. Sci. Comput."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jcp.2016.05.014","article-title":"SAMBA: Sparse approximation of moment-based arbitrary polynomial chaos","volume":"320","author":"Ahlfeld","year":"2016","journal-title":"J. Comput. Phys."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1016\/j.ress.2012.05.002","article-title":"Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion","volume":"106","author":"Oladyshkin","year":"2012","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"ref_33","unstructured":"Ernst, O., Sprungk, B., and Tamellini, L. (2019). On Expansions and Nodes for Sparse Grid Collocation of Lognormal Elliptic PDEs. arXiv."},{"key":"ref_34","unstructured":"Georg, N., Loukrezis, D., R\u00f6mer, U., and Sch\u00f6ps, S. (2019). Uncertainty quantification for nanoplasmonics with adjoint-based Leja adaptive collocation and conformal maps. arXiv."},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Nobile, F., Tamellini, L., and Tempone, R. (2015). Comparison of Clenshaw-Curtis and Leja quasi-optimal sparse grids for the approximation of random PDEs. Spectral and High Order Methods for Partial Differential Equations, ICOSAHOM 2014, Springer International Publishing.","DOI":"10.1007\/978-3-319-19800-2_44"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"065011","DOI":"10.1088\/0266-5611\/29\/6\/065011","article-title":"Sparse, adaptive Smolyak quadratures for Bayesian inverse problems","volume":"29","author":"Schillings","year":"2013","journal-title":"Inverse Probl."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1615\/Int.J.UncertaintyQuantification.2018025234","article-title":"Assessing the performance of Leja and Clenshaw-Curtis collocation for computational electromagnetics with random input data","volume":"9","author":"Loukrezis","year":"2019","journal-title":"Int. J. Uncertain. Quantif."},{"key":"ref_38","unstructured":"Loukrezis, D. (2019). Adaptive Approximations for High-Dimensional Uncertainty Quantification in Stochastic Parametric Electromagnetic Field Simulations. [Ph.D. Thesis, TU Darmstadt]."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"A199","DOI":"10.1137\/15M1020447","article-title":"Multivariate Polynomial Chaos Expansions with Dependent Variables","volume":"40","author":"Feinberg","year":"2018","journal-title":"SIAM J. Sci. Comput."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.probengmech.2008.05.001","article-title":"A generalization of the Nataf transformation to distributions with elliptical copula","volume":"24","author":"Lebrun","year":"2009","journal-title":"Probab. Eng. Mech."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"8","DOI":"10.4064\/ap-4-1-8-13","article-title":"Sur certaines suites li\u00e9es aux ensembles plans et leur application \u00e0 la repr\u00e9sentation conforme","volume":"4","author":"Leja","year":"1957","journal-title":"Ann. Pol. Math."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"462","DOI":"10.1093\/imanum\/drn082","article-title":"Lebesgue constants for Leja points","volume":"30","author":"Taylor","year":"2010","journal-title":"IMA J. Numer. Anal."},{"key":"ref_43","first-page":"621","article-title":"On Leja sequences: some results and applications","volume":"152","author":"Marchi","year":"2004","journal-title":"Appl. Math. Comput."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"1039","DOI":"10.1093\/imanum\/dry002","article-title":"On the Lebesgue constant of weighted Leja points for Lagrange interpolation on unbounded domains","volume":"39","author":"Jantsch","year":"2019","journal-title":"IMA J. Numer. Anal."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1017\/S0962492904000182","article-title":"Sparse grids","volume":"13","author":"Bungartz","year":"2004","journal-title":"Acta Numer."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"1250023","DOI":"10.1142\/S0218202512500236","article-title":"On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods","volume":"22","author":"Beck","year":"2012","journal-title":"Math. Model. Methods Appl. Sci."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1007\/s00607-003-0015-5","article-title":"Dimension-adaptive tensor-product quadrature","volume":"71","author":"Gerstner","year":"2003","journal-title":"Computing"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"561","DOI":"10.1145\/1114268.1114275","article-title":"Algorithm 847: Spinterp: Piecewise multilinear hierarchical sparse grid interpolation in MATLAB","volume":"31","author":"Klimke","year":"2005","journal-title":"ACM Trans. Math. Softw."},{"key":"ref_49","doi-asserted-by":"crossref","unstructured":"Buzzard, G.T. (2013). Efficient Basis Change for Sparse-Grid Interpolating Polynomials with Application to T-Cell Sensitivity Analysis. Comput. Biol. J., 2013, Available online: https:\/\/www.hindawi.com\/journals\/cbj\/2013\/562767\/.","DOI":"10.1155\/2013\/562767"},{"key":"ref_50","unstructured":"Marelli, S., and Sudret, B. (2020, February 25). UQLab User Manual Polynomial Chaos Expansions, 2015. Available online: https:\/\/www.researchgate.net\/profile\/Bruno_Sudret\/publication\/279532922_UQLab_user_manual_-_Polynomial_chaos_expansions\/links\/5595b6c308ae793d137b26a5\/UQLab-user-manual-Polynomial-chaos-expansions.pdf."},{"key":"ref_51","unstructured":"Surjanovic, S., and Bingham, D. (2019, March 01). Virtual Library of Simulation Experiments: Test Functions and Datasets. Available online: http:\/\/www.sfu.ca\/$\\sim$ssurjano."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1007\/BF01194859","article-title":"Two basic problems in reliability-based structural optimization","volume":"46","author":"Kuschel","year":"1997","journal-title":"Math. Methods Oper. Res."},{"key":"ref_53","doi-asserted-by":"crossref","unstructured":"Loukrezis, D., Galetzka, A., and De Gersem, H. (2020). Robust Adaptive Least Squares Polynomial Chaos Expansions in High-Frequency Applications. Int. J. Numer. Model. El., e2725. Available online: https:\/\/onlinelibrary.wiley.com\/doi\/abs\/10.1002\/jnm.2725.","DOI":"10.1002\/jnm.2725"},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"878","DOI":"10.1109\/TEMC.2010.2050693","article-title":"Complex permittivity and permeability measurements and finite-difference time-domain simulation of ferrite materials","volume":"52","author":"Xu","year":"2010","journal-title":"IEEE Trans. Electromagn. Compat."}],"container-title":["Algorithms"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1999-4893\/13\/3\/51\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,24]],"date-time":"2024-06-24T21:47:10Z","timestamp":1719265630000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1999-4893\/13\/3\/51"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,2,26]]},"references-count":54,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2020,3]]}},"alternative-id":["a13030051"],"URL":"https:\/\/doi.org\/10.3390\/a13030051","relation":{},"ISSN":["1999-4893"],"issn-type":[{"type":"electronic","value":"1999-4893"}],"subject":[],"published":{"date-parts":[[2020,2,26]]}}}