{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T23:37:01Z","timestamp":1740181021468,"version":"3.37.3"},"reference-count":63,"publisher":"Frontiers Media SA","license":[{"start":{"date-parts":[[2020,8,13]],"date-time":"2020-08-13T00:00:00Z","timestamp":1597276800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001659","name":"Deutsche Forschungsgemeinschaft","doi-asserted-by":"publisher","award":["NO805.8-1"],"id":[{"id":"10.13039\/501100001659","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["frontiersin.org"],"crossmark-restriction":true},"short-container-title":["Front. Artif. Intell."],"DOI":"10.3389\/frai.2020.00052","type":"journal-article","created":{"date-parts":[[2020,8,13]],"date-time":"2020-08-13T04:54:34Z","timestamp":1597294474000},"update-policy":"https:\/\/doi.org\/10.3389\/crossmark-policy","source":"Crossref","is-referenced-by-count":2,"title":["Exploratory-Phase-Free Estimation of GP Hyperparameters in Sequential Design Methods\u2014At the Example of Bayesian Inverse Problems"],"prefix":"10.3389","volume":"3","author":[{"given":"Michael","family":"Sinsbeck","sequence":"first","affiliation":[]},{"given":"Marvin","family":"H\u00f6ge","sequence":"additional","affiliation":[]},{"given":"Wolfgang","family":"Nowak","sequence":"additional","affiliation":[]}],"member":"1965","published-online":{"date-parts":[[2020,8,13]]},"reference":[{"key":"B1","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.strusafe.2013.04.001","article-title":"Kriging-based adaptive importance sampling algorithms for rare event estimation","volume":"44","author":"Balesdent","year":"2013","journal-title":"Struct. Saf"},{"key":"B2","doi-asserted-by":"publisher","first-page":"773","DOI":"10.1007\/s11222-011-9241-4","article-title":"Sequential design of computer experiments for the estimation of a probability of failure","volume":"22","author":"Bect","year":"2012","journal-title":"Stat. Comput"},{"key":"B3","doi-asserted-by":"publisher","first-page":"2459","DOI":"10.2514\/1.34321","article-title":"Efficient global reliability analysis for nonlinear implicit performance functions","volume":"46","author":"Bichon","year":"2008","journal-title":"AIAA J"},{"key":"B4","first-page":"103","article-title":"A Bayesian interactive optimization approach to procedural animation design","volume-title":"Proceedings of the 2010 ACM SIGGRAPH\/Eurographics Symposium on Computer Animation","author":"Brochu","year":"2010"},{"key":"B5","doi-asserted-by":"publisher","first-page":"40","DOI":"10.1214\/15-STS531","article-title":"Analysis methods for computer experiments: how to assess and what counts?","volume":"31","author":"Chen","year":"2016","journal-title":"Stat. Sci"},{"key":"B6","doi-asserted-by":"publisher","first-page":"151","DOI":"10.1137\/15M1033162","article-title":"Adaptive numerical designs for the calibration of computer codes","volume":"6","author":"Damblin","year":"2018","journal-title":"SIAM\/ASA J. Uncertain. Quant"},{"key":"B7","doi-asserted-by":"publisher","first-page":"53","DOI":"10.1111\/j.1467-9469.2005.00469.x","article-title":"Bayesian geostatistical design","volume":"33","author":"Diggle","year":"2006","journal-title":"Scand. J. Stat"},{"key":"B8","doi-asserted-by":"crossref","DOI":"10.1007\/978-0-387-21811-3_2","volume-title":"An Introduction to Model-Based Geostatistics","author":"Diggle","year":"2003"},{"key":"B9","doi-asserted-by":"publisher","first-page":"179","DOI":"10.1016\/j.ejor.2017.10.002","article-title":"Comparison of gaussian process modeling software","volume":"266","author":"Erickson","year":"2018","journal-title":"Eur. J. Oper. Res"},{"volume-title":"Contaminant Hydrogeology","year":"2018","author":"Fetter","key":"B10"},{"key":"B11","doi-asserted-by":"publisher","first-page":"306","DOI":"10.1086\/670067","article-title":"emcee: the MCMC hammer","volume":"125","author":"Foreman-Mackey","year":"2013","journal-title":"Publ. Astron. Soc. Pac"},{"key":"B12","doi-asserted-by":"crossref","DOI":"10.1002\/9780470770801","volume-title":"Engineering Design via Surrogate Modelling: A Practical Guide","author":"Forrester","year":"2008"},{"key":"B13","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1287\/educ.2018.0188","article-title":"Bayesian optimization","volume-title":"Recent Advances in Optimization and Modeling of Contemporary Problems","author":"Frazier","year":"2018"},{"key":"B14","first-page":"24","article-title":"Active learning of linear embeddings for Gaussian processes","volume-title":"Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence","author":"Garnett","year":"2014"},{"key":"B15","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/e19100555","article-title":"The prior can often only be understood in the context of the likelihood","volume":"19","author":"Gelman","year":"2017","journal-title":"Entropy"},{"key":"B16","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1002\/9781118445112.stat08124","article-title":"Sequential design of computer experiments","volume-title":"Wiley StatsRef: Statistics Reference Online","author":"Ginsbourger","year":"2018"},{"key":"B17","doi-asserted-by":"publisher","first-page":"65","DOI":"10.2140\/camcos.2010.5.65","article-title":"Ensemble samplers with affine invariance","volume":"5","author":"Goodman","year":"2010","journal-title":"Commun. Appl. Math. Comput. Sci"},{"key":"B18","doi-asserted-by":"crossref","DOI":"10.1201\/9780367815493","volume-title":"Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences","author":"Gramacy","year":"2020"},{"key":"B19","doi-asserted-by":"publisher","first-page":"403","DOI":"10.1080\/00401706.1993.10485354","article-title":"A Bayesian analysis of Kriging","volume":"35","author":"Handcock","year":"1993","journal-title":"Technometrics"},{"key":"B20","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1093\/biomet\/57.1.97","article-title":"Monte Carlo sampling methods using Markov chains and their applications","volume":"57","author":"Hastings","year":"1970","journal-title":"Biometrika"},{"key":"B21","doi-asserted-by":"publisher","first-page":"1809","DOI":"10.5555\/2188385.2343701","article-title":"Entropy search for information-efficient global optimization","volume":"13","author":"Hennig","year":"2012","journal-title":"J. Mach. Learn. Res"},{"key":"B22","first-page":"918","article-title":"Predictive entropy search for efficient global optimization of black-box functions","volume-title":"Advances in Neural Information Processing Systems 27","author":"Hern\u00e1ndez-Lobato","year":"2014"},{"key":"B23","doi-asserted-by":"publisher","first-page":"570","DOI":"10.1198\/016214507000000888","article-title":"Computer model calibration using high-dimensional output","volume":"103","author":"Higdon","year":"2008","journal-title":"J. Am. Stat. Assoc"},{"key":"B24","doi-asserted-by":"publisher","first-page":"448","DOI":"10.1137\/S1064827503426693","article-title":"Combining field data and computer simulations for calibration and prediction","volume":"26","author":"Higdon","year":"2004","journal-title":"SIAM J. Sci. Comput"},{"key":"B25","doi-asserted-by":"crossref","DOI":"10.1017\/CBO9780511790423","volume-title":"Probability Theory - The Logic of Science","author":"Jaynes","year":"2003"},{"key":"B26","doi-asserted-by":"publisher","first-page":"455","DOI":"10.1023\/A:1008306431147","article-title":"Efficient global optimization of expensive black-box functions","volume":"13","author":"Jones","year":"1998","journal-title":"J. Glob. Optim"},{"key":"B27","doi-asserted-by":"publisher","first-page":"493","DOI":"10.1016\/j.cam.2005.09.027","article-title":"Statistical inverse problems: discretization, model reduction and inverse crimes","volume":"198","author":"Kaipio","year":"2007","journal-title":"J. Comput. Appl. Math"},{"key":"B28","doi-asserted-by":"publisher","first-page":"473","DOI":"10.1093\/biomet\/ass079","article-title":"The role of the range parameter for estimation and prediction in geostatistics","volume":"100","author":"Kaufman","year":"2013","journal-title":"Biometrika"},{"key":"B29","doi-asserted-by":"publisher","first-page":"425","DOI":"10.1111\/1467-9868.00294","article-title":"Bayesian calibration of computer models","volume":"63","author":"Kennedy","year":"2001","journal-title":"J. Am. Stat. Assoc. Ser. B Stat. Methodol"},{"key":"B30","doi-asserted-by":"crossref","DOI":"10.1017\/CBO9780511626166","volume-title":"Introduction to Geostatistics","author":"Kitanidis","year":"1997"},{"key":"B31","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/978-3-319-76035-3_1","article-title":"Design and analysis of simulation experiments","volume-title":"Statistics and Simulation","author":"Kleijnen","year":"2018"},{"key":"B32","doi-asserted-by":"publisher","first-page":"97","DOI":"10.1115\/1.3653121","article-title":"A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise","volume":"86","author":"Kushner","year":"1964","journal-title":"J. Basic Eng"},{"key":"B33","doi-asserted-by":"publisher","first-page":"A1163","DOI":"10.1137\/130938189","article-title":"Adaptive construction of surrogates for the Bayesian solution of inverse problems","volume":"36","author":"Li","year":"2014","journal-title":"SIAM J. Sci. Comput"},{"key":"B34","doi-asserted-by":"publisher","first-page":"366","DOI":"10.1198\/TECH.2009.08040","article-title":"Choosing the sample size of a computer experiment: a practical guide","volume":"51","author":"Loeppky","year":"2009","journal-title":"Technometrics"},{"key":"B35","doi-asserted-by":"publisher","first-page":"1224","DOI":"10.1137\/17M1153157","article-title":"Finite-dimensional gaussian approximation with linear inequality constraints","volume":"6","author":"L\u00f3pez-Lopera","year":"2018","journal-title":"SIAM\/ASA J. Uncertain. Quant"},{"key":"B36","doi-asserted-by":"publisher","first-page":"66","DOI":"10.1016\/j.envsoft.2018.07.016","article-title":"Accelerating Bayesian inference in hydrological modeling with a mechanistic emulator","volume":"109","author":"Machac","year":"2018","journal-title":"Environ. Modell. Softw"},{"key":"B37","doi-asserted-by":"publisher","first-page":"560","DOI":"10.1016\/j.jcp.2006.10.010","article-title":"Stochastic spectral methods for efficient Bayesian solution of inverse problems","volume":"224","author":"Marzouk","year":"2007","journal-title":"J. Comput. Phys"},{"key":"B38","doi-asserted-by":"publisher","first-page":"192","DOI":"10.1016\/j.geoderma.2005.04.003","article-title":"The Mat\u00e9rn function as a general model for soil variograms","volume":"128","author":"Minasny","year":"2005","journal-title":"Geoderma"},{"volume-title":"Bayesian Approach to Global Optimization: Theory and Applications","year":"2012","author":"Mockus","key":"B39"},{"key":"B40","doi-asserted-by":"publisher","first-page":"134","DOI":"10.1287\/deca.2019.0405","article-title":"Value of information analysis for complex simulator models: application to wind farm maintenance","volume":"17","author":"Myklebust","year":"2020","journal-title":"Decis. Anal"},{"key":"B41","doi-asserted-by":"publisher","first-page":"1","DOI":"10.3390\/e18110409","article-title":"Entropy-based experimental design for optimal model discrimination in the geosciences","volume":"18","author":"Nowak","year":"2016","journal-title":"Entropy"},{"key":"B42","doi-asserted-by":"publisher","first-page":"1290","DOI":"10.1016\/j.ress.2005.11.025","article-title":"Bayesian analysis of computer code outputs: a tutorial","volume":"91","author":"O'Hagan","year":"2006","journal-title":"Reliabil. Eng. Syst. Saf"},{"key":"B43","first-page":"1","article-title":"Gaussian processes for global optimization","volume-title":"3rd International Conference on Learning and Intelligent Optimization LION3","author":"Osborne","year":"2009"},{"key":"B44","doi-asserted-by":"publisher","first-page":"071008","DOI":"10.1115\/1.4001873","article-title":"Adaptive designs of experiments for accurate approximation of target regions","volume":"132","author":"Picheny","year":"2010","journal-title":"J. Mech. Design"},{"key":"B45","doi-asserted-by":"publisher","first-page":"527","DOI":"10.1198\/004017008000000541","article-title":"Sequential experiment design for contour estimation from complex computer codes","volume":"50","author":"Ranjan","year":"2008","journal-title":"Technometrics"},{"volume-title":"Gaussian Processes for Machine Learning","year":"2006","author":"Rasmussen","key":"B46"},{"key":"B47","first-page":"645","article-title":"Gaussian processes with monotonicity information","volume-title":"Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics","author":"Riihim\u00e4ki","year":"2010"},{"key":"B48","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1080\/00401706.1989.10488474","article-title":"Designs for computer experiments","volume":"31","author":"Sacks","year":"1989","journal-title":"Technometrics"},{"key":"B49","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4757-3799-8","volume-title":"The Design and Analysis of Computer Experiments","author":"Santner","year":"2003"},{"key":"B50","doi-asserted-by":"publisher","first-page":"148","DOI":"10.1109\/JPROC.2015.2494218","article-title":"Taking the Human out of the loop: a review of Bayesian optimization","volume":"104","author":"Shahriari","year":"2016","journal-title":"Proc. IEEE"},{"key":"B51","doi-asserted-by":"publisher","first-page":"640","DOI":"10.1137\/15M1047659","article-title":"Sequential design of computer experiments for the solution of Bayesian inverse problems with process emulators","volume":"5","author":"Sinsbeck","year":"2017","journal-title":"SIAM\/ASA J. Uncertain. Quant"},{"key":"B52","first-page":"2951","article-title":"Practical Bayesian optimization of machine learning algorithms","volume-title":"Advances in Neural Information Processing Systems","author":"Snoek","year":"2012"},{"key":"B53","first-page":"2171","article-title":"Scalable Bayesian optimization using deep neural networks","volume-title":"International Conference on Machine Learning","author":"Snoek","year":"2015"},{"key":"B54","doi-asserted-by":"publisher","first-page":"31","DOI":"10.1007\/s10898-004-6733-1","article-title":"On the design of optimization strategies based on global response surface approximation models","volume":"33","author":"S\u00f3bester","year":"2005","journal-title":"J. Glob. Optim"},{"key":"B55","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4612-1494-6","volume-title":"Interpolation of Spatial Data: Some Theory for Kriging","author":"Stein","year":"1999"},{"key":"B56","doi-asserted-by":"publisher","first-page":"451","DOI":"10.1017\/S0962492910000061","article-title":"Inverse problems: a Bayesian perspective","volume":"19","author":"Stuart","year":"2010","journal-title":"Acta Num"},{"key":"B57","doi-asserted-by":"crossref","DOI":"10.1137\/1.9780898717921","volume-title":"Inverse Problem Theory and Methods for Model Parameter Estimation","author":"Tarantola","year":"2005"},{"key":"B58","unstructured":"TeckentrupA. L.\n Convergence of Gaussian process regression with estimated hyper-parameters and applications in Bayesian inverse problems. arXiv [preprint]. arXiv:1909.002322019"},{"key":"B59","doi-asserted-by":"publisher","first-page":"285","DOI":"10.1093\/biomet\/25.3-4.285","article-title":"On the likelihood that one unknown probability exceeds another in view of the evidence of two samples","volume":"25","author":"Thompson","year":"1933","journal-title":"Biometrika"},{"key":"B60","doi-asserted-by":"publisher","first-page":"509","DOI":"10.1007\/s10898-008-9354-2","article-title":"An informational approach to the global optimization of expensive-to-evaluate functions","volume":"44","author":"Villemonteix","year":"2009","journal-title":"J. Glob. Optim"},{"key":"B61","first-page":"3627","article-title":"Max-value entropy search for efficient Bayesian optimization","volume-title":"Proceedings of the 34th International Conference on Machine Learning-Volume 70","author":"Wang","year":"2017"},{"key":"B62","unstructured":"Sequential design of computer experiments to minimize integrated response functions11331152\n WilliamsB. J.\n SantnerT. J.\n NotzW. I.\n Stat. Sin102000"},{"key":"B63","doi-asserted-by":"publisher","first-page":"1051","DOI":"10.1029\/2001WR001146","article-title":"When good statistical models of aquifer heterogeneity go bad: a comparison of flow, dispersion, and mass transfer in connected and multivariate gaussian hydraulic conductivity fields","volume":"39","author":"Zinn","year":"2003","journal-title":"Water Resour. Res"}],"container-title":["Frontiers in Artificial Intelligence"],"original-title":[],"link":[{"URL":"https:\/\/www.frontiersin.org\/article\/10.3389\/frai.2020.00052\/full","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,8,13]],"date-time":"2020-08-13T04:54:45Z","timestamp":1597294485000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.frontiersin.org\/article\/10.3389\/frai.2020.00052\/full"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,8,13]]},"references-count":63,"alternative-id":["10.3389\/frai.2020.00052"],"URL":"https:\/\/doi.org\/10.3389\/frai.2020.00052","relation":{},"ISSN":["2624-8212"],"issn-type":[{"type":"electronic","value":"2624-8212"}],"subject":[],"published":{"date-parts":[[2020,8,13]]}}}