{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T23:42:14Z","timestamp":1740181334014,"version":"3.37.3"},"reference-count":29,"publisher":"Korea Multimedia Society - English Version Journal","issue":"4","license":[{"start":{"date-parts":[[2021,12,31]],"date-time":"2021-12-31T00:00:00Z","timestamp":1640908800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100002645","name":"Sangmyung University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002645","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["www.jmis.org"],"crossmark-restriction":true},"short-container-title":["J Multimed Inf Syst"],"DOI":"10.33851\/jmis.2021.8.4.251","type":"journal-article","created":{"date-parts":[[2022,1,18]],"date-time":"2022-01-18T08:46:08Z","timestamp":1642495568000},"page":"251-258","update-policy":"https:\/\/doi.org\/10.33851\/crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Lightweight Convolutional Neural Network (CNN) based COVID-19\n Detection using X-ray Images"],"prefix":"10.33851","volume":"8","author":[{"given":"Muneeb A.","family":"Khan","sequence":"first","affiliation":[]},{"given":"Hemin","family":"Park","sequence":"additional","affiliation":[]}],"member":"19702","published-online":{"date-parts":[[2021,12,31]]},"reference":[{"key":"key2.0220118094516e+13_B1","doi-asserted-by":"crossref","unstructured":"Al-shamasneh and U. Obaidellah, \u201cArtificial Intelligence\n Techniques for Cancer Detection and Classification: Review Study,\u201d\n European Scientific Journal, vol. 13, no. 3, 2017.\n Available: 10.19044\/esj.2016.v13n3p342.","DOI":"10.19044\/esj.2016.v13n3p342"},{"key":"key2.0220118094516e+13_B2","doi-asserted-by":"crossref","unstructured":"A. Narin, C. Kaya and Z. Pamuk, \u201cAutomatic detection of\n coronavirus disease (COVID-19) using X-ray images and deep convolutional neural\n networks,\u201d Pattern Analysis and Applications, vol. 24,\n no. 3, pp. 1207-1220, 2021. Available: 10.1007\/s10044-021-00984-y. 33994847\n PMC8106971","DOI":"10.1007\/s10044-021-00984-y"},{"key":"key2.0220118094516e+13_B3","doi-asserted-by":"crossref","unstructured":"Beck, B. Shin, Y. Choi, S. Park and K. Kang, \u201cPredicting\n commercially available antiviral drugs that may act on the novel coronavirus\n (SARS-CoV-2) through a drug-target interaction deep learning model,\u201d\n Computational and Structural Biotechnology Journal, vol.\n 18, pp. 784-790, 2020. Available: 10.1016\/j.csbj.2020.03.025. 32280433\n PMC7118541","DOI":"10.1016\/j.csbj.2020.03.025"},{"key":"key2.0220118094516e+13_B4","unstructured":"B. Mukherjee, \u201cFight Detection in Hockey Videos using Deep\n Network,\u201d Koreascience.or.kr, 2021. [Online]. Available:\n http:\/\/koreascience.or.kr\/article\/JAKO201707851608120.page."},{"key":"key2.0220118094516e+13_B5","doi-asserted-by":"crossref","unstructured":"Wang, Y. Sun, T. Duong, L. Nguyen and L. Hanzo, \u201cRisk-Aware\n Identification of Highly Suspected COVID-19 Cases in Social IoT: A Joint Graph\n Theory and Reinforcement Learning Approach,\u201d IEEE\n Access, vol. 8, pp. 115655-115661, 2020. Available: 10.1109\/access.2020.3003750. 34192110\n PMC8043494","DOI":"10.1109\/ACCESS.2020.3003750"},{"key":"key2.0220118094516e+13_B6","doi-asserted-by":"crossref","unstructured":"Liang, Y. Liu, M. Wu, F. Garcia-Castro, A. Alberich-Bayarri and F.\n Wu, \u201cIdentifying pulmonary nodules or masses on chest radiography using\n deep learning: external validation and strategies to improve clinical\n practice,\u201d Clinical Radiology, vol. 75, no. 1, pp.\n 38-45, 2020. Available: 10.1016\/j.crad.2019.08.005. 31521323","DOI":"10.1016\/j.crad.2019.08.005"},{"key":"key2.0220118094516e+13_B7","unstructured":"\u201cCoronavirus,\u201d Who.int, 2021.\n [Online]. Available: https:\/\/www.who.int\/health-topics\/coronavirus. [Accessed: 04-\n Dec- 2021]."},{"key":"key2.0220118094516e+13_B8","unstructured":"\u201cCoronavirus disease (COVID-19) \u2013 World Health\n Organization,\u201d Who.int, 2021. [Online]. Available:\n https:\/\/www.who.int\/emergencies\/diseases\/novel-coronavirus-2019.\n [Accessed: 04- Dec- 2021]."},{"key":"key2.0220118094516e+13_B9","unstructured":"Bangare, \u201cBrain Tumor Detection Using Machine Learning\n Approach,\u201d Design Engineering, no. 7, pp. 7557-7566,\n 2021. Available: http:\/\/www.thedesignengineering.com\/index.php\/DE\/article\/view\/3264."},{"key":"key2.0220118094516e+13_B10","doi-asserted-by":"crossref","unstructured":"D. Singh, V. Kumar, Vaishali and M. Kaur, \u201cClassification of\n COVID-19 patients from chest CT images using multi-objective differential\n evolution\u2013based convolutional neural networks,\u201d European\n Journal of Clinical Microbiology & Infectious Diseases, vol.\n 39, no. 7, pp. 1379-1389, 2020. Available: 10.1007\/s10096-020-03901-z. 32337662\n PMC7183816","DOI":"10.1007\/s10096-020-03901-z"},{"key":"key2.0220118094516e+13_B11","unstructured":"El-Shafai, Walid; Abd El-Samie, Fathi (2020), \u201cExtensive\n COVID-19 X-Ray and CT Chest Images Dataset,\u201d Mendeley Data, V3, doi:\n 10.17632\/8h65ywd2jr.3"},{"key":"key2.0220118094516e+13_B12","unstructured":"Ezz El-Din Hemdan, M. Shouman and M. Karar, \u201cCOVIDX-Net: A\n Framework of Deep Learning Classifiers to Diagnose COVID-19 in X-Ray\n Images,\u201d arXiv.org, 2020. [Online]. Available: https:\/\/arxiv.org\/abs\/2003.11055."},{"key":"key2.0220118094516e+13_B13","unstructured":"B. Ghoshal, A. Tucker, \u201cEstimating uncertainty and\n interpretability in deep learning for coronavirus (COVID-19) detection,\u201d\n arXiv preprint arXiv:2003.10769. 2020 Mar 22."},{"key":"key2.0220118094516e+13_B14","doi-asserted-by":"crossref","unstructured":"Hyo-Eun Kim, et al., \u201cChanges in cancer detection and\n false-positive recall in mammography using artificial intelligence: a\n retrospective, multireader study,\u201d The Lancet Digital\n Health, vol. 2, no. 3, pp. e138-e148, 2020. Available: 10.1016\/s2589-7500(20)30003-0.","DOI":"10.1016\/S2589-7500(20)30003-0"},{"key":"key2.0220118094516e+13_B15","doi-asserted-by":"crossref","unstructured":"J.-H. Kim, B.-G. Kim, P. P. Roy and D.-M. Jeong, \u201cEfficient\n Facial Expression Recognition Algorithm Based on Hierarchical Deep Neural\n Network Structure,\u201d IEEE Access, vol. 7, pp.\n 41273-41285, 2019. Available: 10.1109\/access.2019.2907327.","DOI":"10.1109\/ACCESS.2019.2907327"},{"key":"key2.0220118094516e+13_B16","doi-asserted-by":"crossref","unstructured":"H. Rathore, A. Al-Ali, A. Mohamed, X. Du and M. Guizani, \u201cA\n Novel Deep Learning Strategy for Classifying Different Attack Patterns for Deep\n Brain Implants,\u201d IEEE Access, vol. 7, pp. 24154-24164,\n 2019. Available: 10.1109\/access.2019.2899558.","DOI":"10.1109\/ACCESS.2019.2899558"},{"key":"key2.0220118094516e+13_B17","unstructured":"\u201cHuman Resources - Doctors,\u201d Organization for\n Economic Co-operation and Development (OECD), 2021. [Online].\n Available: https:\/\/data.oecd.org\/healthres\/doctors.html. [Accessed: 04-\n Dec- 2021]."},{"key":"key2.0220118094516e+13_B18","unstructured":"\u201cMiddle East respiratory syndrome coronavirus\n (MERS-CoV),\u201d Who.int, 2019. [Online]. Available:\n https:\/\/www.who.int\/health-topics\/middle-east-respiratory-syndrome-coronavirus-mers#tab=tab_1.\n [Accessed: 04- Dec- 2021]."},{"key":"key2.0220118094516e+13_B19","doi-asserted-by":"crossref","unstructured":"M. Karar, S. El-Khafif and M. El-Brawany, \u201cAutomated\n Diagnosis of Heart Sounds Using Rule-Based Classification Tree,\u201d\n Journal of Medical Systems, vol. 41, no. 4, 2017.\n Available: 10.1007\/s10916-017-0704-9. 28247307","DOI":"10.1007\/s10916-017-0704-9"},{"key":"key2.0220118094516e+13_B20","doi-asserted-by":"crossref","unstructured":"M. Karar, D. Merk, C. Chalopin, T. Walther, V. Falk and O. Burgert,\n \u201cAortic valve prosthesis tracking for transapical aortic valve\n implantation,\u201d International Journal of Computer Assisted\n Radiology and Surgery, vol. 6, no. 5, pp. 583-590, 2010. Available:\n 10.1007\/s11548-010-0533-5. 20845084","DOI":"10.1007\/s11548-010-0533-5"},{"key":"key2.0220118094516e+13_B21","unstructured":"N. C. Das Adhikari, \u201cInfection Severity Detection of CoVID19\n from X-Rays and CT Scans Using Artificial Intelligence,\u201d\n International Journal of Computer, vol. 38, no. 1, pp.\n 73-92, May 2020."},{"key":"key2.0220118094516e+13_B22","doi-asserted-by":"crossref","unstructured":"N. Ghassemi, A. Shoeibi and M. Rouhani, \u201cDeep neural network\n with generative adversarial networks pre-training for brain tumor classification\n based on MR images,\u201d Biomedical Signal Processing and\n Control, vol. 57, p. 101678, 2020. Available: 10.1016\/j.bspc.2019.101678.","DOI":"10.1016\/j.bspc.2019.101678"},{"key":"key2.0220118094516e+13_B23","doi-asserted-by":"crossref","unstructured":"P. Decharatanachart, R. Chaiteerakij, T. Tiyarattanachai and S.\n Treeprasertsuk, \u201cApplication of artificial intelligence in chronic liver\n diseases: a systematic review and meta-analysis,\u201d BMC\n Gastroenterology, vol. 21, no. 1, 2021. Available: 10.1186\/s12876-020-01585-5. 33407169\n PMC7788739","DOI":"10.1186\/s12876-020-01585-5"},{"key":"key2.0220118094516e+13_B24","doi-asserted-by":"crossref","unstructured":"S. Hussein, P. Kandel, C. Bolan, M. Wallace and U. Bagci,\n \u201cLung and Pancreatic Tumor Characterization in the Deep Learning Era:\n Novel Supervised and Unsupervised Learning Approaches,\u201d IEEE\n Transactions on Medical Imaging, vol. 38, no. 8, pp. 1777-1787,\n 2019. Available: 10.1109\/tmi.2019.2894349.\n 30676950","DOI":"10.1109\/TMI.2019.2894349"},{"key":"key2.0220118094516e+13_B25","unstructured":"\u201cSummary of probable SARS cases with onset of illness from 1\n November 2002 to 31 July 2003,\u201d Who.int, 2015. [Online].\n Available:https:\/\/www.who.int\/publications\/m\/item\/summary-of-probable-sars-cases-with-onset-of-illness-from-1-november-2002-to-31-july-2003.\n [Accessed: 04- Dec- 2021]."},{"key":"key2.0220118094516e+13_B26","doi-asserted-by":"crossref","unstructured":"S. Wang et al., \u201cA deep learning algorithm using CT images to\n screen for Corona virus disease (COVID-19),\u201d European\n Radiology, 2021. Available: 10.1007\/s00330-021-07715-1. 33629156\n PMC7904034","DOI":"10.1007\/s00330-021-07715-1"},{"key":"key2.0220118094516e+13_B27","doi-asserted-by":"crossref","unstructured":"Y. Minoda et al., \u201cEfficacy of endoscopic ultrasound with\n artificial intelligence for the diagnosis of gastrointestinal stromal\n tumors,\u201d Journal of Gastroenterology, vol. 55, no. 12,\n pp. 1119-1126, 2020. Available: 10.1007\/s00535-020-01725-4. 32918102","DOI":"10.1007\/s00535-020-01725-4"},{"key":"key2.0220118094516e+13_B28","doi-asserted-by":"crossref","unstructured":"Y.-H. Heo, B.-G. Kim and P. P. Roy, \u201cFrontal Face Generation\n Algorithm from Multi-view Images Based on Generative Adversarial\n Network,\u201d Journal of Multimedia Information System, vol.\n 8, no. 2, pp. 85-92, 2021. Available: 10.33851\/jmis.2021.8.2.85.","DOI":"10.33851\/JMIS.2021.8.2.85"},{"key":"key2.0220118094516e+13_B29","unstructured":"X. Chen, L. Yao and Y. Zhang, \u201cResidual Attention U-Net for\n Automated Multi-Class Segmentation of COVID-19 Chest CT Images,\u201d\n arXiv.org, 2020. [Online]. Available: https:\/\/arxiv.org\/abs\/2004.05645."}],"container-title":["Journal of Multimedia Information System"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/www.jmis.org\/download\/download_pdf?doi=10.33851\/JMIS.2021.8.4.251","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/www.jmis.org\/download\/download_pdf?doi=10.33851\/JMIS.2021.8.4.251","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,18]],"date-time":"2022-01-18T08:49:37Z","timestamp":1642495777000},"score":1,"resource":{"primary":{"URL":"http:\/\/www.jmis.org\/archive\/view_article?doi=10.33851\/JMIS.2021.8.4.251"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12,31]]},"references-count":29,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2021,12,31]]}},"alternative-id":["10.33851\/JMIS.2021.8.4.251"],"URL":"https:\/\/doi.org\/10.33851\/jmis.2021.8.4.251","relation":{},"ISSN":["2383-7632"],"issn-type":[{"type":"electronic","value":"2383-7632"}],"subject":[],"published":{"date-parts":[[2021,12,31]]},"assertion":[{"value":"2021-12-07","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2021-12-28","order":1,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}}]}}