{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,31]],"date-time":"2024-10-31T02:58:52Z","timestamp":1730343532160,"version":"3.28.0"},"reference-count":18,"publisher":"IEEE","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,1,24]]},"DOI":"10.23919\/eusipco47968.2020.9287347","type":"proceedings-article","created":{"date-parts":[[2020,12,18]],"date-time":"2020-12-18T21:54:18Z","timestamp":1608328458000},"page":"1210-1214","source":"Crossref","is-referenced-by-count":2,"title":["Epileptic EEG Classification Using Synchrosqueezing Transform with Machine and Deep Learning Techniques"],"prefix":"10.23919","author":[{"given":"Ozlem Karabiber","family":"Cura","sequence":"first","affiliation":[]},{"given":"Mehmet Akif","family":"Ozdemir","sequence":"additional","affiliation":[]},{"given":"Aydin","family":"Akan","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/ICASSP.2019.8682391"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TIE.2017.2696503"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2017.07.022"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/S0016-0032(00)00038-7"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1007\/s13244-018-0639-9"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/CIS.2019.00030"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1007\/s12652-019-01220-6"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TIPTEKNO.2018.8596780"},{"key":"ref18","first-page":"1","article-title":"Epileptic seizure classifications using empirical mode decomposition and its derivative","volume":"19","author":"cura","year":"2020","journal-title":"BioMedical Engineering OnLine"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2019.101787"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.bbe.2018.10.006"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.bbe.2020.02.001"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2019.101707"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2020.113239"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2020.01.017"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2019.101833"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2019.103549"},{"key":"ref9","article-title":"Time-frequency domain deep convolutional neural network for the classification of focal and non-focal eeg signals","author":"srirangan","year":"2019","journal-title":"IEEE Sensors Journal"}],"event":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","start":{"date-parts":[[2021,1,18]]},"location":"Amsterdam, Netherlands","end":{"date-parts":[[2021,1,21]]}},"container-title":["2020 28th European Signal Processing Conference (EUSIPCO)"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/9287308\/9287310\/09287347.pdf?arnumber=9287347","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,25]],"date-time":"2022-01-25T23:20:07Z","timestamp":1643152807000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9287347\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1,24]]},"references-count":18,"URL":"https:\/\/doi.org\/10.23919\/eusipco47968.2020.9287347","relation":{},"subject":[],"published":{"date-parts":[[2021,1,24]]}}}