{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,30]],"date-time":"2024-07-30T15:51:14Z","timestamp":1722354674632},"reference-count":85,"publisher":"Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften","license":[{"start":{"date-parts":[[2023,9,7]],"date-time":"2023-09-07T00:00:00Z","timestamp":1694044800000},"content-version":"unspecified","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"ERC Grant Agreement","award":["948139"]},{"DOI":"10.13039\/501100001691","name":"Japan Society for the Promotion of Science","doi-asserted-by":"crossref","award":["KAKENHI Grant No. 22KF0067"],"id":[{"id":"10.13039\/501100001691","id-type":"DOI","asserted-by":"crossref"}]},{"name":"NUS Startup Grant","award":["R-263-000-E32-133"]},{"name":"NUS Startup Grant","award":["R-263-000-E32-731"]}],"content-domain":{"domain":["quantum-journal.org"],"crossmark-restriction":false},"short-container-title":["Quantum"],"abstract":"We show that the proof of the generalised quantum Stein&apos;s lemma [Brand\u00e3o & Plenio, Commun. Math. Phys. 295, 791 (2010)] is not correct due to a gap in the argument leading to Lemma III.9. Hence, the main achievability result of Brand\u00e3o & Plenio is not known to hold. This puts into question a number of established results in the literature, in particular the reversibility of quantum entanglement [Brand\u00e3o & Plenio, Commun. Math. Phys. 295, 829 (2010); Nat. Phys. 4, 873 (2008)] and of general quantum resources [Brand\u00e3o & Gour, Phys. Rev. Lett. 115, 070503 (2015)] under asymptotically resource non-generating operations. We discuss potential ways to recover variants of the newly unsettled results using other approaches.<\/jats:p>","DOI":"10.22331\/q-2023-09-07-1103","type":"journal-article","created":{"date-parts":[[2023,9,7]],"date-time":"2023-09-07T14:47:03Z","timestamp":1694098023000},"page":"1103","update-policy":"http:\/\/dx.doi.org\/10.22331\/q-crossmark-policy-page","source":"Crossref","is-referenced-by-count":15,"title":["On a gap in the proof of the generalised quantum Stein&apos;s lemma and its consequences for the reversibility of quantum resources"],"prefix":"10.22331","volume":"7","author":[{"given":"Mario","family":"Berta","sequence":"first","affiliation":[{"name":"Institute for Quantum Information, RWTH Aachen University, Aachen, Germany"},{"name":"Department of Computing, Imperial College London, London, UK"}]},{"given":"Fernando G. S. L.","family":"Brand\u00e3o","sequence":"additional","affiliation":[{"name":"Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA"},{"name":"AWS Center for Quantum Computing, Pasadena, CA, USA"}]},{"given":"Gilad","family":"Gour","sequence":"additional","affiliation":[{"name":"Department of Mathematics and Statistics, Institute for Quantum Science and Technology, University of Calgary, AB, Canada T2N 1N4"}]},{"given":"Ludovico","family":"Lami","sequence":"additional","affiliation":[{"name":"Institut f\u00fcr Theoretische Physik und IQST, Universit\u00e4t Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany"},{"name":"QuSoft, Science Park 123, 1098 XG Amsterdam, The Netherlands"},{"name":"Korteweg\u2013de Vries Institute for Mathematics, University of Amsterdam, Science Park 105-107, 1098 XG Amsterdam, The Netherlands"},{"name":"Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands"}]},{"given":"Martin B.","family":"Plenio","sequence":"additional","affiliation":[{"name":"Institut f\u00fcr Theoretische Physik und IQST, Universit\u00e4t Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany"}]},{"given":"Bartosz","family":"Regula","sequence":"additional","affiliation":[{"name":"Mathematical Quantum Information RIKEN Hakubi Research Team, RIKEN Cluster for Pioneering Research (CPR) and RIKEN Center for Quantum Computing (RQC), Wako, Saitama 351-0198, Japan"},{"name":"Department of Physics, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan"}]},{"given":"Marco","family":"Tomamichel","sequence":"additional","affiliation":[{"name":"Center for Quantum Technologies, National University of Singapore, Singapore"},{"name":"Department of Electrical and Computer Engineering, College of Design and Engineering, National University of Singapore, Singapore"}]}],"member":"9598","published-online":{"date-parts":[[2023,9,7]]},"reference":[{"key":"0","doi-asserted-by":"publisher","unstructured":"A. Anshu, M. Berta, R. Jain, and M. Tomamichel. A minimax approach to one-shot entropy inequalities. J. Math. Phys., 60:122201, 2019. doi:https:\/\/doi.org\/10.1063\/1.5126723.","DOI":"10.1063\/1.5126723"},{"key":"1","doi-asserted-by":"publisher","unstructured":"K. M. R. Audenaert, M. Nussbaum, A. Szko\u0142a, and F. Verstraete. Asymptotic error rates in quantum hypothesis testing. Commun. Math. Phys., 279(1):251\u2013283, 2008. doi:https:\/\/doi.org\/10.1007\/s00220-008-0417-5.","DOI":"10.1007\/s00220-008-0417-5"},{"key":"2","doi-asserted-by":"publisher","unstructured":"F. G. S. L. Brand\u00e3o, M. Horodecki, J. Oppenheim, J. M. Renes, and R. W. Spekkens. Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett., 111:250404, 2013. doi:https:\/\/doi.org\/10.1103\/PhysRevLett.111.250404.","DOI":"10.1103\/PhysRevLett.111.250404"},{"key":"3","doi-asserted-by":"publisher","unstructured":"M. Berta, F. G. S. L. Brand\u00e3o, and C. Hirche. On composite quantum hypothesis testing. Commun. Math. Phys., 385:55\u201377, 2021. doi:https:\/\/doi.org\/10.1007\/s00220-021-04133-8.","DOI":"10.1007\/s00220-021-04133-8"},{"key":"4","doi-asserted-by":"publisher","unstructured":"C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett., 76:722\u2013725, 1996. doi:https:\/\/doi.org\/10.1103\/PhysRevLett.76.722.","DOI":"10.1103\/PhysRevLett.76.722"},{"key":"5","doi-asserted-by":"publisher","unstructured":"C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher. Concentrating partial entanglement by local operations. Phys. Rev. A, 53:2046\u20132052, 1996. doi:https:\/\/doi.org\/10.1103\/PhysRevA.53.2046.","DOI":"10.1103\/PhysRevA.53.2046"},{"key":"6","doi-asserted-by":"publisher","unstructured":"T. Baumgratz, M. Cramer, and M. B. Plenio. Quantifying coherence. Phys. Rev. Lett., 113:140401, 2014. doi:https:\/\/doi.org\/10.1103\/PhysRevLett.113.140401.","DOI":"10.1103\/PhysRevLett.113.140401"},{"key":"7","doi-asserted-by":"publisher","unstructured":"M. Berta, M. Christandl, and R. Renner. The quantum reverse Shannon theorem based on one-shot information theory. Commun. Math. Phys., 306(3):579, 2011. doi:https:\/\/doi.org\/10.1007\/s00220-011-1309-7.","DOI":"10.1007\/s00220-011-1309-7"},{"key":"8","doi-asserted-by":"publisher","unstructured":"F. G. S. L. Brand\u00e3o, M. Christandl, and J. Yard. Faithful squashed entanglement. Commun. Math. Phys., 306(3):805, 2011. doi:https:\/\/doi.org\/10.1007\/s00220-011-1302-1.","DOI":"10.1007\/s00220-011-1302-1"},{"key":"9","unstructured":"F. G. S. L. Brand\u00e3o, M. Christandl, and J. Yard, 2023. Personal communications."},{"key":"10","doi-asserted-by":"publisher","unstructured":"F. Buscemi and N. Datta. The quantum capacity of channels with arbitrarily correlated noise. IEEE Trans. Inf. Theory, 56:1447\u20131460, 2010. doi:https:\/\/doi.org\/10.1109\/TIT.2009.2039166.","DOI":"10.1109\/TIT.2009.2039166"},{"key":"11","doi-asserted-by":"publisher","unstructured":"F. G. S. L. Brand\u00e3o and N. Datta. One-shot rates for entanglement manipulation under non-entangling maps. IEEE Trans. Inf. Theory, 57:1754\u20131760, 2011. doi:https:\/\/doi.org\/10.1109\/TIT.2011.2104531.","DOI":"10.1109\/TIT.2011.2104531"},{"key":"12","doi-asserted-by":"publisher","unstructured":"C. H. Bennett, I. Devetak, A. W. Harrow, P. W. Shor, and A. Winter. The quantum reverse Shannon theorem and resource tradeoffs for simulating quantum channels. IEEE Trans. Inf. Theory, 60(5):2926\u20132959, 2014. doi:https:\/\/doi.org\/10.1109\/TIT.2014.2309968.","DOI":"10.1109\/TIT.2014.2309968"},{"key":"13","doi-asserted-by":"publisher","unstructured":"C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters. Mixed-state entanglement and quantum error correction. Phys. Rev. A, 54:3824\u20133851, 1996. doi:https:\/\/doi.org\/10.1103\/PhysRevA.54.3824.","DOI":"10.1103\/PhysRevA.54.3824"},{"key":"14","doi-asserted-by":"publisher","unstructured":"M. Berta, O. Fawzi, and M. Tomamichel. On variational expressions for quantum relative entropies. Lett. Math. Phys., 107(12):2239\u20132265, 2017. doi:https:\/\/doi.org\/10.1007\/s11005-017-0990-7.","DOI":"10.1007\/s11005-017-0990-7"},{"key":"15","doi-asserted-by":"publisher","unstructured":"F. G. S. L. Brand\u00e3o and G. Gour. Reversible framework for quantum resource theories. Phys. Rev. Lett., 115:070503, 2015. doi:https:\/\/doi.org\/10.1103\/PhysRevLett.115.070503.","DOI":"10.1103\/PhysRevLett.115.070503"},{"key":"16","doi-asserted-by":"publisher","unstructured":"F. G. S. L. Brand\u00e3o, A. W. Harrow, J. R. Lee, and Y. Peres. Adversarial hypothesis testing and a quantum Stein's lemma for restricted measurements. IEEE Trans. Inf. Theory, 66:5037\u20135054, 2020. doi:https:\/\/doi.org\/10.1109\/TIT.2020.2979704.","DOI":"10.1109\/TIT.2020.2979704"},{"key":"17","doi-asserted-by":"publisher","unstructured":"M. Berta and C. Majenz. Disentanglement cost of quantum states. Phys. Rev. Lett., 121:190503, 2018. doi:https:\/\/doi.org\/10.1103\/PhysRevLett.121.190503.","DOI":"10.1103\/PhysRevLett.121.190503"},{"key":"18","doi-asserted-by":"publisher","unstructured":"F. G. S. L. Brand\u00e3o and M. B. Plenio. Entanglement theory and the second law of thermodynamics. Nat. Phys., 4:873, 2008. doi:https:\/\/doi.org\/10.1038\/nphys1100.","DOI":"10.1038\/nphys1100"},{"key":"19","doi-asserted-by":"publisher","unstructured":"F. G. S. L. Brand\u00e3o and M. B. Plenio. A generalization of quantum Stein's lemma. Commun. Math. Phys., 295(3):791\u2013828, 2010. doi:https:\/\/doi.org\/10.1007\/s00220-010-1005-z.","DOI":"10.1007\/s00220-010-1005-z"},{"key":"20","doi-asserted-by":"publisher","unstructured":"F. G. S. L. Brand\u00e3o and M. B. Plenio. A reversible theory of entanglement and its relation to the second law. Commun. Math. Phys., 295(3):829\u2013851, 2010. doi:https:\/\/doi.org\/10.1007\/s00220-010-1003-1.","DOI":"10.1007\/s00220-010-1003-1"},{"key":"21","doi-asserted-by":"publisher","unstructured":"S. Beigi and P. W. Shor. Approximating the set of separable states using the positive partial transpose test. J. Math. Phys., 51:042202, 2010. doi:https:\/\/doi.org\/10.1063\/1.3364793.","DOI":"10.1063\/1.3364793"},{"key":"22","doi-asserted-by":"publisher","unstructured":"C. H. Bennett, P. W. Shor, J. A. Smolin, and A. V. Thapliyal. Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory, 48(10):2637\u20132655, 2002. doi:https:\/\/doi.org\/10.1109\/TIT.2002.802612.","DOI":"10.1109\/TIT.2002.802612"},{"key":"23","doi-asserted-by":"publisher","unstructured":"M. Berta and M. Tomamichel. Entanglement monogamy via multivariate trace inequalities. Preprint arXiv:2304.14878, 2023. doi:https:\/\/doi.org\/10.48550\/arXiv.2304.14878.","DOI":"10.48550\/arXiv.2304.14878"},{"key":"24","doi-asserted-by":"publisher","unstructured":"E. Chitambar and G. Gour. Quantum resource theories. Rev. Mod. Phys., 91:025001, 2019. doi:https:\/\/doi.org\/10.1103\/RevModPhys.91.025001.","DOI":"10.1103\/RevModPhys.91.025001"},{"key":"25","doi-asserted-by":"publisher","unstructured":"E. Chitambar. Dephasing-covariant operations enable asymptotic reversibility of quantum resources. Phys. Rev. A, 97:050301, 2018. doi:https:\/\/doi.org\/10.1103\/PhysRevA.97.050301.","DOI":"10.1103\/PhysRevA.97.050301"},{"key":"26","doi-asserted-by":"publisher","unstructured":"T. Cooney, M. Mosonyi, and M. M. Wilde. Strong converse exponents for a quantum channel discrimination problem and quantum-feedback-assisted communication. Commun. Math. Phys., 344(3):797\u2013829, 2016. doi:https:\/\/doi.org\/10.1007\/s00220-016-2645-4.","DOI":"10.1007\/s00220-016-2645-4"},{"key":"27","doi-asserted-by":"publisher","unstructured":"M. Christandl and A. Winter. Squashed entanglement: An additive entanglement measure. J. Math. Phys., 45(3):829\u2013840, 2004. doi:https:\/\/doi.org\/10.1063\/1.1643788.","DOI":"10.1063\/1.1643788"},{"key":"28","doi-asserted-by":"publisher","unstructured":"N. Datta. Max-relative entropy of entanglement, alias log robustness. Int. J. Quantum Inform., 07:475\u2013491, 2009. doi:https:\/\/doi.org\/10.1142\/S0219749909005298.","DOI":"10.1142\/S0219749909005298"},{"key":"29","doi-asserted-by":"publisher","unstructured":"N. Datta. Min- and Max-Relative Entropies and a New Entanglement Monotone. IEEE Trans. Inf. Theory, 55:2816\u20132826, 2009. doi:https:\/\/doi.org\/10.1109\/TIT.2009.2018325.","DOI":"10.1109\/TIT.2009.2018325"},{"key":"30","doi-asserted-by":"publisher","unstructured":"M. J. Donald. On the relative entropy. Commun. Math. Phys., 105(1):13\u201334, 1986. doi:https:\/\/doi.org\/10.1007\/BF01212339.","DOI":"10.1007\/BF01212339"},{"key":"31","doi-asserted-by":"publisher","unstructured":"I. Devetak and A. Winter. Distillation of secret key and entanglement from quantum states. Proc. Royal Soc. A, 461(2053):207\u2013235, 2005. doi:https:\/\/doi.org\/10.1098\/rspa.2004.1372.","DOI":"10.1098\/rspa.2004.1372"},{"key":"32","doi-asserted-by":"publisher","unstructured":"I. Devetak and J. Yard. Exact Cost of Redistributing Multipartite Quantum States. Phys. Rev. Lett., 100:230501, 2008. doi:https:\/\/doi.org\/10.1103\/PhysRevLett.100.230501.","DOI":"10.1103\/PhysRevLett.100.230501"},{"key":"33","doi-asserted-by":"publisher","unstructured":"P. Faist, M. Berta, and F. Brand\u00e3o. Thermodynamic capacity of quantum processes. Phys. Rev. Lett., 122:200601, 2019. doi:https:\/\/doi.org\/10.1103\/PhysRevLett.122.200601.","DOI":"10.1103\/PhysRevLett.122.200601"},{"key":"34","doi-asserted-by":"publisher","unstructured":"M. Fekete. \u00dcber die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z., 17(1):228\u2013249, 1923. doi:https:\/\/doi.org\/10.1007\/BF01504345.","DOI":"10.1007\/BF01504345"},{"key":"35","doi-asserted-by":"publisher","unstructured":"K. Fang, O. Fawzi, R. Renner, and D. Sutter. Chain rule for the quantum relative entropy. Phys. Rev. Lett., 124:100501, 2020. doi:https:\/\/doi.org\/10.1103\/PhysRevLett.124.100501.","DOI":"10.1103\/PhysRevLett.124.100501"},{"key":"36","doi-asserted-by":"publisher","unstructured":"K. Fang, G. Gour, and X. Wang. Towards the ultimate limits of quantum channel discrimination. Preprint arXiv:2110.14842v1, 2021. doi:https:\/\/doi.org\/10.48550\/arXiv.2110.14842.","DOI":"10.48550\/arXiv.2110.14842"},{"key":"37","doi-asserted-by":"publisher","unstructured":"G. Ferrari, L. Lami, T. Theurer, and M. B. Plenio. Asymptotic state transformations of continuous variable resources. Commun. Math. Phys., 398(1):291\u2013351, 2023. doi:https:\/\/doi.org\/10.1007\/s00220-022-04523-6.","DOI":"10.1007\/s00220-022-04523-6"},{"key":"38","doi-asserted-by":"publisher","unstructured":"C. A. Fuchs and J. van de Graaf. Cryptographic distinguishability measures for quantum-mechanical states. IEEE Trans. Inf. Theory, 45(4):1216\u20131227, 1999. doi:https:\/\/doi.org\/10.1109\/18.761271.","DOI":"10.1109\/18.761271"},{"key":"39","doi-asserted-by":"publisher","unstructured":"G. Gour, I. Marvian, and R. W. Spekkens. Measuring the quality of a quantum reference frame: The relative entropy of frameness. Phys. Rev. A, 80:012307, 2009. doi:https:\/\/doi.org\/10.1103\/PhysRevA.80.012307.","DOI":"10.1103\/PhysRevA.80.012307"},{"key":"40","doi-asserted-by":"publisher","unstructured":"G. Gour and A. Winter. How to quantify a dynamical quantum resource. Phys. Rev. Lett., 123:150401, 2019. doi:https:\/\/doi.org\/10.1103\/PhysRevLett.123.150401.","DOI":"10.1103\/PhysRevLett.123.150401"},{"key":"41","doi-asserted-by":"publisher","unstructured":"M. Hayashi. Optimal sequence of quantum measurements in the sense of Stein's lemma in quantum hypothesis testing. J. Phys. A, 35(50):10759\u201310773, 2002. doi:https:\/\/doi.org\/10.1088\/0305-4470\/35\/50\/307.","DOI":"10.1088\/0305-4470\/35\/50\/307"},{"key":"42","unstructured":"C. W. Helstrom. Quantum detection and estimation theory. Academic press, 1976."},{"key":"43","doi-asserted-by":"publisher","unstructured":"M. Horodecki, P. Horodecki, and R. Horodecki. Mixed-state entanglement and distillation: Is there a ``bound'' entanglement in nature? Phys. Rev. Lett., 80:5239\u20135242, 1998. doi:https:\/\/doi.org\/10.1103\/PhysRevLett.80.5239.","DOI":"10.1103\/PhysRevLett.80.5239"},{"key":"44","doi-asserted-by":"publisher","unstructured":"A. W. Harrow and M. A. Nielsen. Robustness of quantum gates in the presence of noise. Phys. Rev. A, 68:012308, 2003. doi:https:\/\/doi.org\/10.1103\/PhysRevA.68.012308.","DOI":"10.1103\/PhysRevA.68.012308"},{"key":"45","doi-asserted-by":"publisher","unstructured":"M. Horodecki and J. Oppenheim. (Quantumness in the context of) Resource theories. Int. J. Mod. Phys. B, 27:1345019, 2012. doi:https:\/\/doi.org\/10.1142\/S0217979213450197.","DOI":"10.1142\/S0217979213450197"},{"key":"46","unstructured":"A. S. Holevo. Investigations in the general theory of statistical decisions. Trudy Mat. Inst. Steklov, 124:3\u2013140, 1976. (English translation: Proc. Steklov Inst. Math. 124, 1 (1978))."},{"key":"47","doi-asserted-by":"publisher","unstructured":"M. Horodecki. Entanglement measures. Quantum Inf. Comput., 1(1):3\u201326, 2001. doi:https:\/\/doi.org\/10.26421\/QIC1.1-2.","DOI":"10.26421\/QIC1.1-2"},{"key":"48","doi-asserted-by":"publisher","unstructured":"F. Hiai and D. Petz. The proper formula for relative entropy and its asymptotics in quantum probability. Comm. Math. Phys., 143(1):99\u2013114, 1991. doi:https:\/\/doi.org\/10.1007\/BF02100287.","DOI":"10.1007\/BF02100287"},{"key":"49","doi-asserted-by":"publisher","unstructured":"P. Horodecki, \u0141. Rudnicki, and K. \u017byczkowski. Five open problems in quantum information theory. PRX Quantum, 3:010101, 2022. doi:https:\/\/doi.org\/10.1103\/PRXQuantum.3.010101.","DOI":"10.1103\/PRXQuantum.3.010101"},{"key":"50","doi-asserted-by":"publisher","unstructured":"M. Hayashi and M. Tomamichel. Correlation detection and an operational interpretation of the R\u00e9nyi mutual information. J. Math. Phys., 57(10):102201, 2016. doi:https:\/\/doi.org\/10.1063\/1.4964755.","DOI":"10.1063\/1.4964755"},{"key":"51","doi-asserted-by":"publisher","unstructured":"S. Kullback and R. A. Leibler. On information and sufficiency. Ann. Math. Statist., 22(1):79\u201386, 1951. doi:10.1214\/aoms\/1177729694.","DOI":"10.1214\/aoms\/1177729694"},{"key":"52","doi-asserted-by":"publisher","unstructured":"E. H. Lieb. Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv. Math., 11(3):267\u2013288, 1973. doi:https:\/\/doi.org\/10.1016\/0001-8708(73)90011-X.","DOI":"10.1016\/0001-8708(73)90011-X"},{"key":"53","doi-asserted-by":"publisher","unstructured":"G. Lindblad. Completely positive maps and entropy inequalities. Commun. Math. Phys., 40(2):147\u2013151, 1975. doi:https:\/\/doi.org\/10.1007\/BF01609396.","DOI":"10.1007\/BF01609396"},{"key":"54","doi-asserted-by":"publisher","unstructured":"E. H. Lieb and M. B. Ruskai. A fundamental property of quantum-mechanical entropy. Phys. Rev. Lett., 30(10):434\u2013436, 1973. doi:https:\/\/doi.org\/10.1103\/PhysRevLett.30.434.","DOI":"10.1103\/PhysRevLett.30.434"},{"key":"55","doi-asserted-by":"publisher","unstructured":"E. H. Lieb and M. B. Ruskai. Proof of the strong subadditivity of quantum mechanical entropy. J. Math. Phys., 14(12):1938\u20131941, 1973. doi:https:\/\/doi.org\/10.1063\/1.1666274.","DOI":"10.1063\/1.1666274"},{"key":"56","doi-asserted-by":"publisher","unstructured":"L. Lami and B. Regula. Distillable entanglement under dually non-entangling operations. Preprint arXiv:2307.11008, 2023. doi:https:\/\/doi.org\/10.48550\/arXiv.2307.11008.","DOI":"10.48550\/arXiv.2307.11008"},{"key":"57","doi-asserted-by":"publisher","unstructured":"L. Lami and B. Regula. No second law of entanglement manipulation after all. Nat. Phys., 19(2):184\u2013189, 2023. doi:https:\/\/doi.org\/10.1038\/s41567-022-01873-9.","DOI":"10.1038\/s41567-022-01873-9"},{"key":"58","doi-asserted-by":"publisher","unstructured":"K. Li and A. Winter. Relative entropy and squashed entanglement. Commun. Math. Phys., 326(1):63\u201380, 2014. doi:https:\/\/doi.org\/10.1007\/s00220-013-1871-2.","DOI":"10.1007\/s00220-013-1871-2"},{"key":"59","doi-asserted-by":"publisher","unstructured":"K. Li and A. Winter. Squashed entanglement, k-extendibility, quantum Markov chains, and recovery maps. Found. Phys., 48(8):910\u2013924, 2018. doi:https:\/\/doi.org\/10.1007\/s10701-018-0143-6.","DOI":"10.1007\/s10701-018-0143-6"},{"key":"60","doi-asserted-by":"publisher","unstructured":"M. Mosonyi and F. Hiai. On the Quantum R\u00e9nyi Relative Entropies and Related Capacity Formulas. IEEE Trans. Inf. Theory, 57:2474\u20132487, 2011. doi:https:\/\/doi.org\/10.1109\/TIT.2011.2110050.","DOI":"10.1109\/TIT.2011.2110050"},{"key":"61","doi-asserted-by":"publisher","unstructured":"M. Mosonyi, Z. Szil\u00e1gyi, and M. Weiner. On the error exponents of binary state discrimination with composite hypotheses. IEEE Trans. Inf. Theory, 68:1032\u20131067, 2022. doi:https:\/\/doi.org\/10.1109\/TIT.2021.3125683.","DOI":"10.1109\/TIT.2021.3125683"},{"key":"62","doi-asserted-by":"publisher","unstructured":"T. Ogawa and H. Nagaoka. Strong converse and Stein's lemma in quantum hypothesis testing. IEEE Trans. Inf. Theory, 46(7):2428\u20132433, 2000. doi:https:\/\/doi.org\/10.1109\/18.887855.","DOI":"10.1109\/18.887855"},{"key":"63","doi-asserted-by":"publisher","unstructured":"A. Peres. Separability criterion for density matrices. Phys. Rev. Lett., 77:1413\u20131415, 1996. doi:https:\/\/doi.org\/10.1103\/PhysRevLett.77.1413.","DOI":"10.1103\/PhysRevLett.77.1413"},{"key":"64","doi-asserted-by":"publisher","unstructured":"D. Petz. Quasi-entropies for finite quantum systems. Rep. Math. Phys., 23(1):57\u201365, 1986. doi:https:\/\/doi.org\/10.1016\/0034-4877(86)90067-4.","DOI":"10.1016\/0034-4877(86)90067-4"},{"key":"65","doi-asserted-by":"publisher","unstructured":"D. Petz. Sufficient subalgebras and the relative entropy of states of a von Neumann algebra. Commun. Math. Phys., 105(1):123\u2013131, 1986. doi:https:\/\/doi.org\/10.1007\/BF01212345.","DOI":"10.1007\/BF01212345"},{"key":"66","doi-asserted-by":"publisher","unstructured":"M. Piani. Relative entropy of entanglement and restricted measurements. Phys. Rev. Lett., 103:160504, 2009. doi:https:\/\/doi.org\/10.1103\/PhysRevLett.103.160504.","DOI":"10.1103\/PhysRevLett.103.160504"},{"key":"67","doi-asserted-by":"publisher","unstructured":"D. Reeb and M. M. Wolf. Tight bound on relative entropy by entropy difference. IEEE Trans. Inf. Theory, 61(3):1458\u20131473, 2015. doi:https:\/\/doi.org\/10.1109\/TIT.2014.2387822.","DOI":"10.1109\/TIT.2014.2387822"},{"key":"68","doi-asserted-by":"publisher","unstructured":"A. Streltsov, G. Adesso, and M. B. Plenio. Colloquium: Quantum coherence as a resource. Rev. Mod. Phys., 89:041003, 2017. doi:https:\/\/doi.org\/10.1103\/RevModPhys.89.041003.","DOI":"10.1103\/RevModPhys.89.041003"},{"key":"69","doi-asserted-by":"publisher","unstructured":"B. Synak-Radtke and M. Horodecki. On asymptotic continuity of functions of quantum states. J. Phys. A, 39(26):L423\u2013L437, 2006. doi:https:\/\/doi.org\/10.1088\/0305-4470\/39\/26\/l02.","DOI":"10.1088\/0305-4470\/39\/26\/l02"},{"key":"70","doi-asserted-by":"publisher","unstructured":"M. Tomamichel and M. Hayashi. A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks. IEEE Trans. Inf. Theory, 59:7693\u20137710, 2013. doi:https:\/\/doi.org\/10.1109\/TIT.2013.2276628.","DOI":"10.1109\/TIT.2013.2276628"},{"key":"71","doi-asserted-by":"publisher","unstructured":"M. Tomamichel and M. Hayashi. Operational interpretation of R\u00e9nyi information measures via composite hypothesis testing against product and Markov distributions. IEEE Trans. Inf. Theory, 64(2):1064\u20131082, 2018. doi:https:\/\/doi.org\/10.1109\/TIT.2017.2776900.","DOI":"10.1109\/TIT.2017.2776900"},{"key":"72","doi-asserted-by":"publisher","unstructured":"M. Tomamichel. A Framework for Non-Asymptotic Quantum Information Theory. PhD thesis, ETH Zurich, 2013. doi:https:\/\/doi.org\/10.48550\/arXiv.1203.2142.","DOI":"10.48550\/arXiv.1203.2142"},{"key":"73","doi-asserted-by":"crossref","unstructured":"M. Tomamichel. Quantum Information Processing with Finite Resources: Mathematical Foundations. Springer, 2015.","DOI":"10.1007\/978-3-319-21891-5"},{"key":"74","doi-asserted-by":"publisher","unstructured":"R. R. Tucci. Quantum entanglement and conditional information transmission. Preprint arXiv:quant-ph\/9909041, 1999. doi:https:\/\/doi.org\/10.48550\/arXiv.quant-ph\/9909041.","DOI":"10.48550\/arXiv.quant-ph\/9909041"},{"key":"75","doi-asserted-by":"publisher","unstructured":"V. Vedral and M. B. Plenio. Entanglement measures and purification procedures. Phys. Rev. A, 57:1619\u20131633, 1998. doi:https:\/\/doi.org\/10.1103\/PhysRevA.57.1619.","DOI":"10.1103\/PhysRevA.57.1619"},{"key":"76","doi-asserted-by":"publisher","unstructured":"V. Vedral, M. B. Plenio, M. A. Rippin, and P. L. Knight. Quantifying entanglement. Phys. Rev. Lett., 78:2275\u20132279, 1997. doi:https:\/\/doi.org\/10.1103\/PhysRevLett.78.2275.","DOI":"10.1103\/PhysRevLett.78.2275"},{"key":"77","doi-asserted-by":"publisher","unstructured":"G. Vidal and R. Tarrach. Robustness of entanglement. Phys. Rev. A, 59(1):141, 1999. doi:https:\/\/doi.org\/10.1103\/PhysRevA.59.141.","DOI":"10.1103\/PhysRevA.59.141"},{"key":"78","doi-asserted-by":"publisher","unstructured":"K. G. H. Vollbrecht and R. F. Werner. Entanglement measures under symmetry. Phys. Rev. A, 64:062307, 2001. doi:https:\/\/doi.org\/10.1103\/PhysRevA.64.062307.","DOI":"10.1103\/PhysRevA.64.062307"},{"key":"79","doi-asserted-by":"publisher","unstructured":"M. M. Wilde, M. Berta, C. Hirche, and E. Kaur. Amortized channel divergence for asymptotic quantum channel discrimination. Lett. Math. Phys., 110:2277, 2020. doi:https:\/\/doi.org\/10.1007\/s11005-020-01297-7.","DOI":"10.1007\/s11005-020-01297-7"},{"key":"80","doi-asserted-by":"publisher","unstructured":"X. Wang and R. Duan. Irreversibility of asymptotic entanglement manipulation under quantum operations completely preserving positivity of partial transpose. Phys. Rev. Lett., 119:180506, 2017. doi:https:\/\/doi.org\/10.1103\/PhysRevLett.119.180506.","DOI":"10.1103\/PhysRevLett.119.180506"},{"key":"81","doi-asserted-by":"publisher","unstructured":"R. F. Werner. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A, 40:4277\u20134281, 1989. doi:https:\/\/doi.org\/10.1103\/PhysRevA.40.4277.","DOI":"10.1103\/PhysRevA.40.4277"},{"key":"82","doi-asserted-by":"publisher","unstructured":"A. Winter. Tight uniform continuity bounds for quantum entropies: Conditional entropy, relative entropy distance and energy constraints. Commun. Math. Phys., 347(1):291\u2013313, 2016. doi:https:\/\/doi.org\/10.1007\/s00220-016-2609-8.","DOI":"10.1007\/s00220-016-2609-8"},{"key":"83","doi-asserted-by":"publisher","unstructured":"L. Wang and R. Renner. One-shot classical-quantum capacity and hypothesis testing. Phys. Rev. Lett., 108:200501, 2012. doi:https:\/\/doi.org\/10.1103\/PhysRevLett.108.200501.","DOI":"10.1103\/PhysRevLett.108.200501"},{"key":"84","doi-asserted-by":"publisher","unstructured":"X. Wang and M. M. Wilde. Resource theory of asymmetric distinguishability for quantum channels. Phys. Rev. Research, 1:033169, 2019. doi:https:\/\/doi.org\/10.1103\/PhysRevResearch.1.033169.","DOI":"10.1103\/PhysRevResearch.1.033169"}],"container-title":["Quantum"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/quantum-journal.org\/papers\/q-2023-09-07-1103\/pdf\/","content-type":"unspecified","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,8]],"date-time":"2023-09-08T09:09:20Z","timestamp":1694164160000},"score":1,"resource":{"primary":{"URL":"https:\/\/quantum-journal.org\/papers\/q-2023-09-07-1103\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9,7]]},"references-count":85,"URL":"https:\/\/doi.org\/10.22331\/q-2023-09-07-1103","archive":["CLOCKSS"],"relation":{},"ISSN":["2521-327X"],"issn-type":[{"value":"2521-327X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,9,7]]},"article-number":"1103"}}