{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,2]],"date-time":"2025-04-02T06:43:45Z","timestamp":1743576225127},"reference-count":27,"publisher":"Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften","license":[{"start":{"date-parts":[[2021,1,28]],"date-time":"2021-01-28T00:00:00Z","timestamp":1611792000000},"content-version":"unspecified","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["quantum-journal.org"],"crossmark-restriction":false},"short-container-title":["Quantum"],"abstract":"We propose an efficient method for simultaneously optimizing both the structure and parameter values of quantum circuits with only a small computational overhead. Shallow circuits that use structure optimization perform significantly better than circuits that use parameter updates alone, making this method particularly suitable for noisy intermediate-scale quantum computers. We demonstrate the method for optimizing a variational quantum eigensolver for finding the ground states of Lithium Hydride and the Heisenberg model in simulation, and for finding the ground state of Hydrogen gas on the IBM Melbourne quantum computer.<\/jats:p>","DOI":"10.22331\/q-2021-01-28-391","type":"journal-article","created":{"date-parts":[[2021,1,28]],"date-time":"2021-01-28T13:45:48Z","timestamp":1611841548000},"page":"391","update-policy":"http:\/\/dx.doi.org\/10.22331\/q-crossmark-policy-page","source":"Crossref","is-referenced-by-count":133,"title":["Structure optimization for parameterized quantum circuits"],"prefix":"10.22331","volume":"5","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7915-6662","authenticated-orcid":false,"given":"Mateusz","family":"Ostaszewski","sequence":"first","affiliation":[{"name":"Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Ba\u0142tycka 5, 44-100 Gliwice, Poland"},{"name":"Department of Computer Science, University College London, WC1E 6BT London, United Kingdom"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0657-1915","authenticated-orcid":false,"given":"Edward","family":"Grant","sequence":"additional","affiliation":[{"name":"Department of Computer Science, University College London, WC1E 6BT London, United Kingdom"},{"name":"Rahko Limited, N4 3JP London, United Kingdom"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0231-1729","authenticated-orcid":false,"given":"Marcello","family":"Benedetti","sequence":"additional","affiliation":[{"name":"Department of Computer Science, University College London, WC1E 6BT London, United Kingdom"},{"name":"Cambridge Quantum Computing Limited, CB2 1UB Cambridge, United Kingdom"}]}],"member":"9598","published-online":{"date-parts":[[2021,1,28]]},"reference":[{"key":"0","doi-asserted-by":"publisher","unstructured":"Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Al\u00e1n Aspuru-Guzik, and Jeremy L. O\u2019Brien, ``A variational eigenvalue solver on a photonic quantum processor'' Nature Communications 5, 4213 (2014).","DOI":"10.1038\/ncomms5213"},{"key":"1","unstructured":"E. Farhi, J. Goldstone, S. Gutmann, and H. Neven, ``Quantum Algorithms for Fixed Qubit Architectures'' (2017)."},{"key":"2","unstructured":"Edward Farhiand Hartmut Neven ``Classification with Quantum Neural Networks on Near Term Processors'' (2018)."},{"key":"3","doi-asserted-by":"publisher","unstructured":"Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, Vicente Leyton-Ortega, Yunseong Nam, and Alejandro Perdomo-Ortiz, ``A generative modeling approach for benchmarking and training shallow quantum circuits'' npj Quantum Information 5 (2019).","DOI":"10.1038\/s41534-019-0157-8"},{"key":"4","doi-asserted-by":"publisher","unstructured":"Marcello Benedetti, Edward Grant, Leonard Wossnig, and Simone Severini, ``Adversarial quantum circuit learning for pure state approximation'' New Journal of Physics 21, 043023 (2019).","DOI":"10.1088\/1367-2630\/ab14b5"},{"key":"5","unstructured":"Hongxiang Chen, Leonard Wossnig, Simone Severini, Hartmut Neven, and Masoud Mohseni, ``Universal discriminative quantum neural networks'' (2018)."},{"key":"6","doi-asserted-by":"publisher","unstructured":"Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G Green, and Simone Severini, ``Hierarchical quantum classifiers'' npj Quantum Information 4, 1\u20138 (2018).","DOI":"10.1038\/s41534-018-0116-9"},{"key":"7","doi-asserted-by":"publisher","unstructured":"Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini, ``Parameterized quantum circuits as machine learning models'' Quantum Science and Technology 4, 043001 (2019).","DOI":"10.1088\/2058-9565\/ab4eb5"},{"key":"8","doi-asserted-by":"publisher","unstructured":"K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii, ``Quantum circuit learning'' Phys. Rev. A 98, 032309 (2018).","DOI":"10.1103\/PhysRevA.98.032309"},{"key":"9","doi-asserted-by":"publisher","unstructured":"Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta, ``Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets'' Nature 549, 242\u2013246 (2017).","DOI":"10.1038\/nature23879"},{"key":"10","doi-asserted-by":"publisher","unstructured":"Kosuke Mitarai, Tennin Yan, and Keisuke Fujii, ``Generalization of the Output of a Variational Quantum Eigensolver by Parameter Interpolation with a Low-depth Ansatz'' Phys. Rev. Applied 11, 044087 (2019).","DOI":"10.1103\/PhysRevApplied.11.044087"},{"key":"11","doi-asserted-by":"publisher","unstructured":"Artur F. Izmaylov, Tzu-Ching Yen, and Ilya G. Ryabinkin, ``Revising the measurement process in the variational quantum eigensolver: is it possible to reduce the number of separately measured operators?'' Chem. Sci. 10, 3746\u20133755 (2019).","DOI":"10.1039\/C8SC05592K"},{"key":"12","doi-asserted-by":"publisher","unstructured":"Edward Grant, Leonard Wossnig, Mateusz Ostaszewski, and Marcello Benedetti, ``An initialization strategy for addressing barren plateaus in parametrized quantum circuits'' Quantum 3, 214 (2019).","DOI":"10.22331\/q-2019-12-09-214"},{"key":"13","doi-asserted-by":"publisher","unstructured":"Rui Li, Unai Alvarez-Rodriguez, Lucas Lamata, and Enrique Solano, ``Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience'' Quantum Measurements and Quantum Metrology 4, 1 \u20137 (26 Jul. 2017).","DOI":"10.1515\/qmetro-2017-0001"},{"key":"14","doi-asserted-by":"publisher","unstructured":"Harper R. Grimsley, Sophia E. Economou, Edwin Barnes, and Nicholas J. Mayhall, ``An adaptive variational algorithm for exact molecular simulations on a quantum computer'' Nature Communications 10 (2019).","DOI":"10.1038\/s41467-019-10988-2"},{"key":"15","doi-asserted-by":"publisher","unstructured":"Ken M. Nakanishi, Keisuke Fujii, and Synge Todo, ``Sequential minimal optimization for quantum-classical hybrid algorithms'' Phys. Rev. Research 2, 043158 (2020).","DOI":"10.1103\/PhysRevResearch.2.043158"},{"key":"16","unstructured":"Robert M. Parrish, Joseph T. Iosue, Asier Ozaeta, and Peter L. McMahon, ``A Jacobi Diagonalization and Anderson Acceleration Algorithm For Variational Quantum Algorithm Parameter Optimization'' (2019)."},{"key":"17","unstructured":"D.P. Bertsekas ``Nonlinear Programming'' Athena Scientific (1999)."},{"key":"18","unstructured":"Ankan Sahaand Ambuj Tewari ``On the Finite Time Convergence of Cyclic Coordinate Descent Methods'' (2010)."},{"key":"19","doi-asserted-by":"publisher","unstructured":"Stephen J Wright ``Coordinate descent algorithms'' Mathematical Programming 151, 3\u201334 (2015).","DOI":"10.1007\/s10107-015-0892-3"},{"key":"20","doi-asserted-by":"publisher","unstructured":"Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven, ``Barren plateaus in quantum neural network training landscapes'' Nature Communications 9 (2018).","DOI":"10.1038\/s41467-018-07090-4"},{"key":"21","doi-asserted-by":"publisher","unstructured":"H\u00e9ctor Abraham, Ismail Yunus Akhalwaya, Gadi Aleksandrowicz, Thomas Alexander, Eli Arbel, Abraham Asfaw, Carlos Azaustre, Panagiotis Barkoutsos, George Barron, and Luciano Bello, ``Qiskit: An Open-source Framework for Quantum Computing'' (2019).","DOI":"10.5281\/zenodo.2562110"},{"key":"22","doi-asserted-by":"publisher","unstructured":"Sukin Sim, Peter D. Johnson, and Al\u00e1n Aspuru-Guzik, ``Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms'' Advanced Quantum Technologies 2, 1900070 (2019).","DOI":"10.1002\/qute.201900070"},{"key":"23","doi-asserted-by":"publisher","unstructured":"J. C. Spall ``Multivariate stochastic approximation using a simultaneous perturbation gradient approximation'' IEEE Transactions on Automatic Control 37, 332\u2013341 (1992).","DOI":"10.1109\/9.119632"},{"key":"24","unstructured":"Diederik P. Kingmaand Jimmy Ba ``Adam: A Method for Stochastic Optimization'' (2014)."},{"key":"25","doi-asserted-by":"publisher","unstructured":"Anders S\u00f8rensenand Klaus M\u00f8lmer ``Quantum Computation with Ions in Thermal Motion'' Phys. Rev. Lett. 82, 1971\u20131974 (1999).","DOI":"10.1103\/PhysRevLett.82.1971"},{"key":"26","doi-asserted-by":"publisher","unstructured":"Norbert M. Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt, Kevin A. Landsman, Kenneth Wright, and Christopher Monroe, ``Experimental comparison of two quantum computing architectures'' Proceedings of the National Academy of Sciences 114, 3305\u20133310 (2017).","DOI":"10.1073\/pnas.1618020114"}],"container-title":["Quantum"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/quantum-journal.org\/papers\/q-2021-01-28-391\/pdf\/","content-type":"unspecified","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,1,28]],"date-time":"2021-01-28T13:47:12Z","timestamp":1611841632000},"score":1,"resource":{"primary":{"URL":"https:\/\/quantum-journal.org\/papers\/q-2021-01-28-391\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1,28]]},"references-count":27,"URL":"https:\/\/doi.org\/10.22331\/q-2021-01-28-391","archive":["CLOCKSS"],"relation":{},"ISSN":["2521-327X"],"issn-type":[{"value":"2521-327X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,1,28]]},"article-number":"391"}}