{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,11]],"date-time":"2024-07-11T13:52:16Z","timestamp":1720705936134},"reference-count":36,"publisher":"Verein zur Forderung des Open Access Publizierens in den Quantenwissenschaften","license":[{"start":{"date-parts":[[2021,1,28]],"date-time":"2021-01-28T00:00:00Z","timestamp":1611792000000},"content-version":"unspecified","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["quantum-journal.org"],"crossmark-restriction":false},"short-container-title":["Quantum"],"abstract":"We discuss the notion of coherent states from three different perspectives: the seminal approach of Schr\u00f6dinger, the experimental take of quantum optics, and the theoretical developments in quantum gravity. This comparative study tries to emphasise the connections between the approaches, and to offer a coherent short story of the field, so to speak. It may be useful for pedagogical purposes, as well as for specialists of quantum optics and quantum gravity willing to embed their perspective within a wider landscape.<\/jats:p>","DOI":"10.22331\/q-2021-01-28-390","type":"journal-article","created":{"date-parts":[[2021,1,28]],"date-time":"2021-01-28T13:36:00Z","timestamp":1611840960000},"page":"390","update-policy":"http:\/\/dx.doi.org\/10.22331\/q-crossmark-policy-page","source":"Crossref","is-referenced-by-count":7,"title":["Searching for Coherent States: From Origins to Quantum Gravity"],"prefix":"10.22331","volume":"5","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9213-8036","authenticated-orcid":false,"given":"Pierre","family":"Martin-Dussaud","sequence":"first","affiliation":[{"name":"Aix Marseille Univ, Universit\u00e9 de Toulon, CNRS, CPT, Marseille, France"},{"name":"Basic Research Community for Physics e.V."}]}],"member":"9598","published-online":{"date-parts":[[2021,1,28]]},"reference":[{"key":"0","doi-asserted-by":"publisher","unstructured":"Jean-Pierre Gazeau. Coherent States in Quantum Physics. Wiley-VCH, 2009. ISBN 978-3-527-40725-5. 10.1002\/9783527628285.","DOI":"10.1002\/9783527628285"},{"key":"1","doi-asserted-by":"publisher","unstructured":"Askold Perelomov. Generalized Coherent States and Their Applications. Springer-Verlag, Berlin Heidelberg, 1986. ISBN 978-3-540-15912-4. 10.1007\/978-3-642-61629-7.","DOI":"10.1007\/978-3-642-61629-7"},{"key":"2","doi-asserted-by":"publisher","unstructured":"Erwin Schr\u00f6dinger. Der stetige \u00dcbergang von der Mikro- zur Makromechanik. Die Naturwissenschaften, 14 (28): 664\u2013666, 1926. 10.1007\/BF01507634.","DOI":"10.1007\/BF01507634"},{"key":"3","unstructured":"Robert Gilmore. On the properties of Coherent States. Revista Mexicana de F\u00edsica, 23: 143\u2013187, 1974."},{"key":"4","doi-asserted-by":"publisher","unstructured":"Da Hsuan Feng, Robert Gilmore, and Wei-Min Zhang. Coherent states: Theory and some applications. Reviews of Modern Physics, 62 (4): 867, 1990. 10.1103\/RevModPhys.62.867.","DOI":"10.1103\/RevModPhys.62.867"},{"key":"5","unstructured":"Erwin Schr\u00f6dinger. Collected Papers On Wave Mechanics. Blackie & Son Limited, 1928."},{"key":"6","doi-asserted-by":"publisher","unstructured":"Brian C. Hall. Quantum Theory for Mathematicians, volume 267 of Graduate Texts in Mathematics. Springer New York, New York, NY, 2013. 10.1007\/978-1-4614-7116-5.","DOI":"10.1007\/978-1-4614-7116-5"},{"key":"7","unstructured":"Troy A. Schilling. Geometry of Quantum Mechanics. PhD thesis, The Pennsylvania State University, 1996."},{"key":"8","doi-asserted-by":"publisher","unstructured":"Federico Zalamea. The Twofold Role of Observables in Classical and Quantum Kinematics. Foundations of Physics, 48 (9): 1061\u20131091, November 2018. 10.1007\/s10701-018-0194-8. arXiv: 1711.06914.","DOI":"10.1007\/s10701-018-0194-8"},{"key":"9","unstructured":"Roy J. Glauber. Quantum Theory of Optical Coherence. Wiley-VCH, Weinheim, 2007. ISBN 978-3-527-40687-6."},{"key":"10","unstructured":"Lautaro Amadei and Alejandro Perez. Hawking's information puzzle: A solution realized in loop quantum cosmology. November 2019. arXiv: 1911.00306."},{"key":"11","doi-asserted-by":"publisher","unstructured":"A M Perelomov. Coherent States for Arbitrary Lie Group. Commun. math. Phys., 26: 222\u2013236, 1972. 10.1007\/BF01645091.","DOI":"10.1007\/BF01645091"},{"key":"12","doi-asserted-by":"publisher","unstructured":"Jean-Marie Souriau. Structure of Dynamical Systems. Birkh\u00e4user Boston, Boston, MA, 1997. ISBN 978-1-4612-6692-1. 10.1007\/978-1-4612-0281-3.","DOI":"10.1007\/978-1-4612-0281-3"},{"key":"13","doi-asserted-by":"publisher","unstructured":"Brian C. Hall. The Segal-Bargmann \"coherent state\" transform for compact lie groups. Journal of Functional Analysis, 122 (1): 103\u2013151, 1994. 10.1006\/jfan.1994.1064.","DOI":"10.1006\/jfan.1994.1064"},{"key":"14","doi-asserted-by":"publisher","unstructured":"Brian C Hall. Geometric quantization and the generalized Segal-Bargmann transform for Lie groups of compact type. Communications in Mathematical Physics, 226: 233\u2013268, 2002. 10.1007\/s002200200607. arXiv: quant-ph\/0012105.","DOI":"10.1007\/s002200200607"},{"key":"15","unstructured":"Irving E. Segal. Mathematical Problems of Relativistic Physics. In Mark Kac, editor, Lectures in Applied Mathematics, volume II. American Mathematical Society, 1960."},{"key":"16","doi-asserted-by":"publisher","unstructured":"V. Bargmann. On a Hilbert Space of Analytic Functions and an Associated Integral Transform. Communications on Pure and Applied Mathematics, XIV: 187\u2013214, 1961. 10.1002\/cpa.3160140303.","DOI":"10.1002\/cpa.3160140303"},{"key":"17","doi-asserted-by":"publisher","unstructured":"Brian C. Hall and Jeffrey J. Mitchell. Coherent states on spheres. Journal of Mathematical Physics, 43 (3): 1211\u20131236, 2002. 10.1063\/1.1446664. arXiv: quant-ph\/0109086.","DOI":"10.1063\/1.1446664"},{"key":"18","doi-asserted-by":"publisher","unstructured":"John R. Klauder and Bo-Sture Skagerstam. Coherent States - Applications in Physics and Mathematical Physics. World Scientific, 1985. 10.1142\/0096.","DOI":"10.1142\/0096"},{"key":"19","doi-asserted-by":"publisher","unstructured":"Abhay Ashtekar, Jerzy Lewandowski, Donald Marolf, Jose Mourao, and Thomas Thiemann. Coherent state transforms for spaces of connections. J. Funct. Anal., 135: 519\u2013551, 1996. 10.1006\/jfan.1996.0018. arXiv: gr-qc\/9412014.","DOI":"10.1006\/jfan.1996.0018"},{"key":"20","doi-asserted-by":"publisher","unstructured":"Etera R. Livine and Simone Speziale. New spinfoam vertex for quantum gravity. Physical Review D - Particles, Fields, Gravitation and Cosmology, D76 (8): 84028, 2007. 10.1103\/PhysRevD.76.084028. arXiv: 0705.0674.","DOI":"10.1103\/PhysRevD.76.084028"},{"key":"21","doi-asserted-by":"publisher","unstructured":"Thomas Thiemann. Gauge Field Theory Coherent States (GCS): I. General properties. Classical and Quantum Gravity, 18 (11): 2025\u20132064, 2001. 10.1088\/0264-9381\/18\/11\/304. arXiv: hep-th\/0005233.","DOI":"10.1088\/0264-9381\/18\/11\/304"},{"key":"22","doi-asserted-by":"publisher","unstructured":"T. Thiemann and O. Winkler. Gauge Field Theory Coherent States (GCS): III. Ehrenfest Theorems. Class. Quantum Grav., 18 (21): 4629\u20134681, November 2001a. 10.1088\/0264-9381\/18\/21\/315. arXiv: hep-th\/0005234.","DOI":"10.1088\/0264-9381\/18\/21\/315"},{"key":"23","doi-asserted-by":"publisher","unstructured":"T. Thiemann and O. Winkler. Gauge Field Theory Coherent States (GCS): IV. Infinite Tensor Product and Thermodynamical Limit. Class. Quantum Grav., 18 (23): 4997\u20135053, December 2001b. 10.1088\/0264-9381\/18\/23\/302. arXiv: hep-th\/0005235.","DOI":"10.1088\/0264-9381\/18\/23\/302"},{"key":"24","doi-asserted-by":"publisher","unstructured":"T. Thiemann and O. Winkler. Gauge Field Theory Coherent States (GCS): II. Peakedness Properties. Class. Quantum Grav., 18 (14): 2561\u20132636, July 2001c. 10.1088\/0264-9381\/18\/14\/301. arXiv: hep-th\/0005237.","DOI":"10.1088\/0264-9381\/18\/14\/301"},{"key":"25","doi-asserted-by":"publisher","unstructured":"Eugenio Bianchi, Elena Magliaro, and Claudio Perini. Coherent spin-networks. Phys. Rev., D82: 24012, 2010a. 10.1103\/PhysRevD.82.024012. arXiv: 0912.4054.","DOI":"10.1103\/PhysRevD.82.024012"},{"key":"26","doi-asserted-by":"publisher","unstructured":"Eugenio Bianchi, Elena Magliaro, and Claudio Perini. Spinfoams in the holomorphic representation. Phys. Rev., D82: 124031, 2010b. 10.1103\/PhysRevD.82.124031. arXiv: 1004.4550.","DOI":"10.1103\/PhysRevD.82.124031"},{"key":"27","doi-asserted-by":"publisher","unstructured":"Hanno Sahlmann, Thomas Thiemann, and Oliver Winkler. Coherent states for canonical quantum general relativity and the infinite tensor product extension. Nucl. Phys., B606: 401\u2013440, 2001. 10.1016\/S0550-3213(01)00226-7. arXiv: gr-qc\/0102038.","DOI":"10.1016\/S0550-3213(01)00226-7"},{"key":"28","doi-asserted-by":"publisher","unstructured":"Laurent Freidel and Simone Speziale. Twisted geometries: A geometric parametrization of SU(2) phase space. Physical Review D - Particles, Fields, Gravitation and Cosmology, 82 (8): 1\u201316, 2010. 10.1103\/PhysRevD.82.084040. arXiv: 1001.2748.","DOI":"10.1103\/PhysRevD.82.084040"},{"key":"29","unstructured":"H. Minkowski. Allgemeine Lehrs\u00e4tze \u00fcber die konvexe Polyeder. Nachr. Ges. Wiss. Goettingen, pages 198\u2013219, 1897."},{"key":"30","doi-asserted-by":"publisher","unstructured":"Eugenio Bianchi, Pietro Don\u00e0, and Simone Speziale. Polyhedra in loop quantum gravity. Phys. Rev., D83: 44035, 2011. 10.1103\/PhysRevD.83.044035. arXiv: 1009.3402.","DOI":"10.1103\/PhysRevD.83.044035"},{"key":"31","doi-asserted-by":"publisher","unstructured":"Fabio Anz\u00e0 and Simone Speziale. A note on the secondary simplicity constraints in loop quantum gravity. 32 (19): 195015, October 2015. 10.1088\/0264-9381\/32\/19\/195015. arXiv: 1409.0836.","DOI":"10.1088\/0264-9381\/32\/19\/195015"},{"key":"32","doi-asserted-by":"publisher","unstructured":"Carlo Rovelli and Francesca Vidotto. Covariant Loop Quantum Gravity. Cambridge University Press, 2014. 10.1017\/CBO9781107706910.","DOI":"10.1017\/CBO9781107706910"},{"key":"33","doi-asserted-by":"publisher","unstructured":"Laurent Freidel and Etera R. Livine. U(N) coherent states for loop quantum gravity. Journal of Mathematical Physics, 52 (5), 2011. 10.1063\/1.3587121. arXiv: 1005.2090.","DOI":"10.1063\/1.3587121"},{"key":"34","doi-asserted-by":"publisher","unstructured":"Florian Girelli and Giuseppe Sellaroli. SO*(2N) coherent states for loop quantum gravity. Journal of Mathematical Physics, 58 (7), 2017. 10.1063\/1.4993223. arXiv: 1701.07519.","DOI":"10.1063\/1.4993223"},{"key":"35","doi-asserted-by":"publisher","unstructured":"Laurent Freidel and Jeff Hnybida. A Discrete and Coherent Basis of Intertwiners. Class. Quantum Grav., 31 (1): 015019, January 2014. 10.1088\/0264-9381\/31\/1\/015019. arXiv: 1305.3326.","DOI":"10.1088\/0264-9381\/31\/1\/015019"}],"container-title":["Quantum"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/quantum-journal.org\/papers\/q-2021-01-28-390\/pdf\/","content-type":"unspecified","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,1,28]],"date-time":"2021-01-28T13:36:39Z","timestamp":1611840999000},"score":1,"resource":{"primary":{"URL":"https:\/\/quantum-journal.org\/papers\/q-2021-01-28-390\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1,28]]},"references-count":36,"URL":"https:\/\/doi.org\/10.22331\/q-2021-01-28-390","archive":["CLOCKSS"],"relation":{},"ISSN":["2521-327X"],"issn-type":[{"value":"2521-327X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,1,28]]},"article-number":"390"}}