{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,4,2]],"date-time":"2022-04-02T16:21:45Z","timestamp":1648916505406},"reference-count":60,"publisher":"Information Processing Society of Japan","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IPSJ Transactions on Computer Vision and Applications"],"published-print":{"date-parts":[[2011]]},"DOI":"10.2197\/ipsjtcva.3.95","type":"journal-article","created":{"date-parts":[[2011,12,28]],"date-time":"2011-12-28T06:16:09Z","timestamp":1325052969000},"page":"95-108","source":"Crossref","is-referenced-by-count":0,"title":["Fundamental Strategies for Solving Low-Level Vision Problems"],"prefix":"10.2197","volume":"3","author":[{"given":"Marshall F.","family":"Tappen","sequence":"first","affiliation":[]}],"member":"1012","reference":[{"key":"1","unstructured":"1) Aharon, M., Elad, M., Bruckstein, A. and Katz, Y.: K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation, IEEE Trans. Signal Processing<\/i>, Vol.54, No.11, pp.4311-4322 (2006)."},{"key":"2","unstructured":"2) Anguelov, D., Taskar, B., Chatalbashev, V., Koller, D., Gupta, D., Heitz, G. and Ng, A.: Discriminative Learning of Markov Random Fields for Segmentation of 3D Scan Data, Proc. IEEE Conference on Computer Vision and Pattern Recognition<\/i>, pp.169-176 (2005)."},{"key":"3","unstructured":"3) Barbu, A.: Learning Real-Time MRF Inference for Image Denoising, Proc. IEEE Conference on Computer Vision and Pattern Recognition<\/i>, pp.1574-1581 (2009)."},{"key":"4","unstructured":"4) Barrow, H.G. and Tenenbaum, J.M.: Recovering Intrinsic Scene Characteristics from Images, Hanson, A. and Riseman, E. (Eds.), Computer Vision Systems<\/i>, pp.3-26, Academic Press (1978)."},{"key":"5","unstructured":"5) Bertalmio, M., Sapiro, G., Caselles, V. and Ballester, C.: Image inpainting, Proc. 27th Annual Conference on Computer Graphics and Interactive Techniques<\/i> (SIGGRAPH '00<\/i>), New York, NY, USA, pp.417-424, ACM Press\/Addison-Wesley Publishing Co. (2000)."},{"key":"6","unstructured":"6) Bishop, C.M.: Pattern Recognition and Machine Learning<\/i>, 1st ed. 2006. corr. 2nd printing edition, Springer (2007)."},{"key":"7","unstructured":"7) Black, M.J. and Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision, International Journal of Computer Vision<\/i>, Vol.19, No.1, pp.57-92 (1996)."},{"key":"8","doi-asserted-by":"publisher","DOI":"10.1109\/34.969114"},{"key":"9","unstructured":"9) Desai, C., Ramanan, D. and Fowlkes, C.: Discriminative Models for Multi-Class Object Layout, Proc. IEEE International Conference on Computer Vision<\/i>, pp.228-236 (2009)."},{"key":"10","unstructured":"10) Felzenszwalb, P.F. and Huttenlocher, D.P.: Efficient Belief Propagation for Early Vision, International Journal of Computer Vision<\/i>, Vol.70, No.1, pp.41-54 (2006)."},{"key":"11","unstructured":"11) Finley, T. and Joachims, T.: Training Structural SVMs when Exact Inference is Intractable, International Conference on Machine Learning<\/i> (ICML<\/i>), pp.304-311 (2008)."},{"key":"12","unstructured":"12) Freeman, W.T., Pasztor, E.C. and Carmichael, O.T.: Learning Low-Level Vision, International Journal of Computer Vision<\/i>, Vol.40, No.1, pp.25-47 (2000)."},{"key":"13","unstructured":"13) Frey, B.J. and Jojic, N.: Advances in Algorithms for Inference and Learning in Complex Probability Models for Vision, IEEE Trans. Pattern Analysis and Machine Intelligence<\/i>, Vol.27, No.9, pp.1392-1416 (2002)."},{"key":"14","unstructured":"14) Friedman, J., Hastie, T. and Tibshirani, R.: Additive Logistic Regression: A Statistical View of Boosting, The Annals of Statistics<\/i>, Vol.38, No.2, pp.337-374 (2000)."},{"key":"15","unstructured":"15) Geman, S. and Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE Trans. Pattern Analysis and Machine Intelligence<\/i>, No.6, pp.721-741 (1984)."},{"key":"16","unstructured":"16) Glasner, D., Bagon, S. and Irani, M.: Super-Resolution From a Single Image, Proc. IEEE International Conference on Computer Vision<\/i>, pp.349-356 (2009)."},{"key":"17","doi-asserted-by":"publisher","DOI":"10.1109\/83.846246"},{"key":"18","unstructured":"18) Grosse, R., Johnson, M.K., Adelson, E.H. and Freeman, W.T.: Ground-truth dataset and baseline evaluations for intrinsic image algorithms, International Conference on Computer Vision<\/i>, pp.2335-2342 (2009)."},{"key":"19","unstructured":"19) He, K., Sun, J. and Tang, X.: Single image haze removal using dark channel prior, 2009 IEEE Conference on Computer Vision and Pattern Recognition<\/i>, IEEE, pp.1956-1963 (2009)."},{"key":"20","unstructured":"20) He, X., Zemel, R. and Carreira-Perpinan, M.: Multiscale Conditional Random Fields for Image Labelling, Proc. IEEE Conference on Computer Vision and Pattern Recognition<\/i> (2004)."},{"key":"21","unstructured":"21) Heitz, G., Gould, S., Saxena, A. and Koller, D.: Cascaded Classification Models: Combining Models for Holistic Scene Understanding, Advances in Neural Information Processing Systems<\/i> (NIPS 2008<\/i>) (2008)."},{"key":"22","unstructured":"22) Hinton, G.: Training products of experts by minimizing contrastive divergence, Neural Computation<\/i>, Vol.14, No.7, pp.1771-1800 (2002)."},{"key":"23","unstructured":"23) Hoiem, D., Efros, A.A. and Hebert, M.: Automatic Photo Pop-up, ACM Trans. Graphics<\/i> (SIGGRAPH 2005<\/i>), Vol.24, No.3 (2005)."},{"key":"24","doi-asserted-by":"crossref","unstructured":"24) Hoiem, D., Efros, A.A. and Hebert, M.: Closing the Loop on Scene Interpretation, Proc. IEEE Conference on Computer Vision and Pattern Recognition<\/i> (2008).","DOI":"10.1109\/CVPR.2008.4587587"},{"key":"25","unstructured":"25) Horn, B.K.P. and Schunck, B.G.: Determining Optical Flow, Artificial Intelligence<\/i>, pp.185-203 (1981)."},{"key":"26","unstructured":"26) Horn, B.K.P.: Robot Vision<\/i>, chapter 9, MIT Press (1986)."},{"key":"27","unstructured":"27) Joachims, T., Finley, T. and Yu, C.-N.: Cutting-Plane Training of Structural SVMs, Machine Learning<\/i>, Vol.77, No.1, pp.27-59 (2009)."},{"key":"28","unstructured":"28) Khan, E.A., Reinhard, E., Fleming, R.W. and Bülthoff, H.H.: Image-based material editing, ACM Trans. Gr.<\/i>, Vol.25, pp.654-663 (2006)."},{"key":"29","unstructured":"29) Koller, D. and Friedman, N.: Probabilistic Graphical Models<\/i>: Principles and Techniques<\/i>, MIT Press (2009)."},{"key":"30","unstructured":"30) Kumar, S. and Hebert, M.: Discriminative Random Fields: A Discriminative Framework for Contextual Interaction in Classification, Proc. 2003 IEEE International Conference on Computer Vision<\/i> (ICCV '03<\/i>), Vol.2, pp.1150-1157 (2003)."},{"key":"31","unstructured":"31) Kwatra, V., Essa, I., Bobick, A. and Kwatra, N.: Texture optimization for example-based synthesis, ACM Trans. Gr.<\/i>, Vol.24, pp.795-802 (2005)."},{"key":"32","unstructured":"32) Land, E.H. and McCann, J.J.: Lightness and Retinex Theory, Journal of the Optical Society of America<\/i>, Vol.61, pp.1-11 (1971)."},{"key":"33","unstructured":"33) Levin, A. and Weiss, Y.: Learning to Combine Bottom-Up and Top-Down Segmentation, European Conference on Computer Vision<\/i> (ECCV<\/i>), Graz, Austria (2006)."},{"key":"34","doi-asserted-by":"publisher","DOI":"10.1145\/1015706.1015780"},{"key":"35","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2007.1177"},{"key":"36","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2007.1176"},{"key":"37","doi-asserted-by":"crossref","unstructured":"37) Lowe, D.G.: Perceptual Organization and Visual Recognition<\/i>, Kluwer Academic Publishers, Boston (1985).","DOI":"10.1007\/978-1-4613-2551-2"},{"key":"38","unstructured":"38) Lucas, B.D. and Kanade, T.: An iterative image registration technique with an application in stereo vision, 7th International Joint Conference on Artificial Intelligence<\/i> (IJCAI-81<\/i>), pp.674-679 (1981)."},{"key":"39","unstructured":"39) Mairal, J., Elad, M. and Sapiro, G.: Sparse representation for color image restoration, IEEE Trans. Image Processing<\/i>, pp.53-69 (2007)."},{"key":"40","unstructured":"40) Neal, R.M.: Probabilistic Inference Using Markov Chain Monte Carlo Methods, Technical Report CRG-TR-93-1, University of Toronto, Dept. of Computer Science (1993)."},{"key":"41","unstructured":"41) Pearl, J.: Probabilistic Reasoning in Intelligent Systems<\/i>: Networks of Plausible Inference<\/i>, Morgan Kaufmann, second edition (1988)."},{"key":"42","unstructured":"42) Roth, S. and Black, M.: Field of Experts: A Framework for Learning Image Priors, Proc. IEEE Conference on Computer Vision and Pattern Recognition<\/i>, Vol.2, pp.860-867 (2005)."},{"key":"43","unstructured":"43) Schmidt, U., Gao, Q. and Roth, S.: A Generative Perspective on MRFs in Low-Level Vision, Proc. IEEE Conference on Computer Vision and Pattern Recognition<\/i>, pp.1751-1758 (2010)."},{"key":"44","unstructured":"44) Sun, D., Roth, S. and Black, M.J.: Secrets of Optical Flow Estimation and Their Principles, Proc. IEEE Conference on Computer Vision and Pattern Recognition<\/i>, pp.2432-2439 (2010)."},{"key":"45","unstructured":"45) Sun, J., Sun, J., Xu, Z.B. and Shum, H.Y.: Image Super-resolution Using Gradient Profile Prior, Proc. IEEE Conference on Computer Vision and Pattern Recognition<\/i> (2008)."},{"key":"46","unstructured":"46) Szeliski, R.: Bayesian Modeling of Uncertainty in Low-Level Vision, International Journal of Computer Vision<\/i>, Vol.5, No.3, pp.271-301 (1990)."},{"key":"47","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2007.70844"},{"key":"48","unstructured":"48) Szummer, M., Kohli, P. and Hoiem, D.: Learning CRFs Using Graph Cuts, Proc. European Conference on Computer Vision<\/i> (ECCV<\/i>), pp.582-595 (2008)."},{"key":"49","doi-asserted-by":"crossref","unstructured":"49) Tappen, M.F.: Utilizing Variational Optimization to Learn Markov Random Fields, Proc. IEEE Conference on Computer Vision and Pattern Recognition<\/i> (2007).","DOI":"10.1109\/CVPR.2007.383037"},{"key":"50","unstructured":"50) Tappen, M.F., Adelson, E.H. and Freeman., W.T.: Estimating Intrinsic Component Images using Non-Linear Regression, Proc. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition<\/i> (CVPR<\/i>), Vol.2, pp.1992-1999 (2006)."},{"key":"51","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2005.185"},{"key":"52","doi-asserted-by":"crossref","unstructured":"52) Tappen, M.F., Liu, C., Adelson, E.H. and Freeman, W.T.: Learning Gaussian Conditional Random Fields for Low-Level Vision, Proc. IEEE Conference on Computer Vision and Pattern Recognition<\/i> (2007).","DOI":"10.1109\/CVPR.2007.382979"},{"key":"53","unstructured":"53) Tappen, M.F., Russell, B.C. and Freeman, W.T.: Efficient Graphical Models for Processing Images, Proc. IEEE Conference on Computer Vision and Pattern Recognition<\/i>, Vol.2, pp.673-680 (2004)."},{"key":"54","doi-asserted-by":"crossref","unstructured":"54) Taskar, B., Chatalbashev, V., Koller, D. and Guestrin, C.: Learning Structured Prediction Models: A Large Margin Approach, 22nd International Conference on Machine Learning<\/i> (ICML-2005<\/i>) (2005).","DOI":"10.1145\/1102351.1102464"},{"key":"55","unstructured":"55) Vedaldi, A., Gulshan, V., Varma, M. and Zisserman, A.: Multiple Kernels for Object Detection, Proc. International Conference on Computer Vision<\/i> (ICCV<\/i>), pp.606-613 (2009)."},{"key":"56","unstructured":"56) Wainwright, M.J., Jaakkola, T.S. and Willsky, A.S.: A New Class of Upper Bounds on the Log Partition Function, IEEE Trans. Inf. Theory<\/i>, Vol.51, No.7, pp.2313-2335 (2005)."},{"key":"57","unstructured":"57) Weiss, Y.: Learning and Inference in Low-Level Vision, Invited Talk at NIPS 2009."},{"key":"58","unstructured":"58) Weiss, Y.: Interpreting images by propagating Bayesian beliefs, Advances in Neural Information Processing Systems 9<\/i>, pp.908-915 (1996)."},{"key":"59","unstructured":"59) Zhu, S.C., Wu, Y. and Mumford, D.: Filters, Random Fields and Maximum Entropy (FRAME): Towards a Unified Theory for Texture Modeling, International Journal of Computer Vision<\/i>, Vol.27, No.2, pp.107-126 (1998)."},{"key":"60","doi-asserted-by":"publisher","DOI":"10.1145\/1015706.1015766"}],"container-title":["IPSJ Transactions on Computer Vision and Applications"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/www.jstage.jst.go.jp\/article\/ipsjtcva\/3\/0\/3_0_95\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T01:10:21Z","timestamp":1638321021000},"score":1,"resource":{"primary":{"URL":"http:\/\/www.jstage.jst.go.jp\/article\/ipsjtcva\/3\/0\/3_0_95\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2011]]},"references-count":60,"URL":"https:\/\/doi.org\/10.2197\/ipsjtcva.3.95","relation":{},"ISSN":["1882-6695"],"issn-type":[{"value":"1882-6695","type":"electronic"}],"subject":[],"published":{"date-parts":[[2011]]}}}