{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,8]],"date-time":"2024-01-08T12:42:29Z","timestamp":1704717749513},"reference-count":34,"publisher":"Information Processing Society of Japan","issue":"0","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Journal of Information Processing"],"published-print":{"date-parts":[[2021]]},"DOI":"10.2197\/ipsjjip.29.283","type":"journal-article","created":{"date-parts":[[2021,3,14]],"date-time":"2021-03-14T22:08:40Z","timestamp":1615759720000},"page":"283-294","source":"Crossref","is-referenced-by-count":2,"title":["Power Prediction for Sustainable HPC"],"prefix":"10.2197","volume":"29","author":[{"given":"Shigeto","family":"Suzuki","sequence":"first","affiliation":[{"name":"Fujitsu Laboratories LTD."}]},{"given":"Michiko","family":"Hiraoka","sequence":"additional","affiliation":[{"name":"Fujitsu LTD."}]},{"given":"Takashi","family":"Shiraishi","sequence":"additional","affiliation":[{"name":"Fujitsu Laboratories LTD."}]},{"given":"Enxhi","family":"Kreshpa","sequence":"additional","affiliation":[{"name":"Fujitsu Laboratories LTD."}]},{"given":"Takuji","family":"Yamamoto","sequence":"additional","affiliation":[{"name":"Fujitsu Laboratories LTD."}]},{"given":"Hiroyuki","family":"Fukuda","sequence":"additional","affiliation":[{"name":"Fujitsu Laboratories LTD."}]},{"given":"Shuji","family":"Matsui","sequence":"additional","affiliation":[{"name":"Fujitsu LTD."}]},{"given":"Masahide","family":"Fujisaki","sequence":"additional","affiliation":[{"name":"Fujitsu LTD."}]},{"given":"Atsuya","family":"Uno","sequence":"additional","affiliation":[{"name":"RIKEN Center for Computational Science"}]}],"member":"1012","reference":[{"key":"1","unstructured":"[1] TOP500 Lists, available from <https:\/\/www.top500.org\/lists\/2020\/06\/>."},{"key":"2","unstructured":"[2] A The race to exascale: A story of superpowers and supercomputers, available from <https:\/\/www.datacenterdynamics.com\/analysis\/superpowers-supercomputers-and-race-exascale\/>."},{"key":"3","unstructured":"[3] Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers, A., et al.: In-datacenter performance analysis of a tensor processing unit, Proc. 44th Annual International Symposium on Computer Architecture<\/i>, pp.1-12, ACM (2017)."},{"key":"4","unstructured":"[4] Borghesi, A., Bartolini, A., Lombardi, M., Milano, M. and Benini, L.: Predictive Modeling for Job Power Consumption in HPC Systems, High Performance Computing: 31st International Conference, ISC High Performance 2016<\/i> (2016)."},{"key":"5","unstructured":"[5] Whitepaper: Energy and Power Aware Job Scheduling and Power Management, Energy Efficient HPC Working Group, Working draft, available from <https:\/\/eehpcwg.llnl.gov\/documents\/conference\/sc17\/sc17_bof_epa_jsrm_whitepaper_110917>."},{"key":"6","doi-asserted-by":"crossref","unstructured":"[6] Endo, H., Kodama, H., Fukuda, H., Sugimoto, T., Horie, T. and Kondo, M.: Effect of climatic conditions on energy consumption in direct fresh-air container data centers, IEEE 4th International Green Computing Conference<\/i> (IGCC<\/i>) (2013).","DOI":"10.1109\/IGCC.2013.6604472"},{"key":"7","doi-asserted-by":"crossref","unstructured":"[7] Tarutani, Y., Hashimoto, K., Hasegawa, G., Nakamura, Y., Tamura, T., Matsuda, K. and Matsuoka, M.: Temperature distribution prediction in data centers for decreasing power consumption by machine learning (Dec. 2015).","DOI":"10.1109\/CloudCom.2015.49"},{"key":"8","unstructured":"[8] Serale, G., Fiorentini, M., Capozzoli, A., Bernardini, D. and Bemporad, A.: Model predictive control (MPC) for enhancing building and HVAC system energy efficiency: Problem formulation, Applications and Opportunities Energies<\/i>, Vol.11, p.631 (2018)."},{"key":"9","doi-asserted-by":"crossref","unstructured":"[9] Chai, Y., Wu, A., Dong, N., Wang, Y. and Li, Y.: Dynamic Operation and Control Strategy of Abcorption Chiller under different working Conditions, Proc. 13th World Congress on Intelligent control and Automation<\/i> (2018).","DOI":"10.1109\/WCICA.2018.8630474"},{"key":"10","doi-asserted-by":"crossref","unstructured":"[10] Wallace, S., Yang, X., Vishwanath, V., Allcock, W.E., Coghlan, S., Papka, M.E. and Lan, Z.: A data driven scheduling approach for power management on hpc systems, SC16: International Conference for High Performance Computing, Networking, Storage and Analysis<\/i>, pp.656-666 (Nov. 2016).","DOI":"10.1109\/SC.2016.55"},{"key":"11","unstructured":"[11] Zasadzi\u0144ski, M., Munt\u00e9s-Mulero, V., Sol\u00e9, M. and Ludwig, T.: Mistral Supercomputer Job History Analysis (2018), available from <https:\/\/arxiv.org\/abs\/1801.07624>."},{"key":"12","unstructured":"[12] Meneses, E., Ni, X., Jones, T. and Maxwell, D.: Analyzing the Interplay of failures and Workload on a Leadership-Class Supercomputer, Cray User Group Conference<\/i> (2015)."},{"key":"13","unstructured":"[13] Joubert, W. and Su, S.: Application workloads on the jaguar cray XT5 system, Cray User Group Conference<\/i> (2012)."},{"key":"14","doi-asserted-by":"crossref","unstructured":"[14] Yamamoto, K., Uno, A., Murai, H., Tsukamoto, T., Shoji, F., Matsui, S., Sekizawa, R., Sueyasu, F., Uchiyama, H., Okamoto, M., Ohgushi, N., Takashina, K., Wakabayashi, D., Taguchi, Y. and Yokokawa, M.: The K computer Operations: Experiences and Statistics, Proc. International Conference on Computational Science<\/i> (ICCS<\/i>) (2014).","DOI":"10.1016\/j.procs.2014.05.052"},{"key":"15","unstructured":"[15] Uno, A., Hida, H., Inoue, F., Ikeda, N., Tsukamoto, T., Sueyasu, F., Matsushita, S. and Shoji, F.: Operation of the K computer Focusing on System Power Consumption, IPSJ Trans. Advanced Computing Systems<\/i>, Vol.8, No.4, pp.13-25 (Nov. 2015)."},{"key":"16","unstructured":"[16] Suzuki, S., Hiraoka, M., Shiraishi, T., Fukuda, H., Yamamoto, T., Matsui, S. and Uno, A.: Power prediction with probabilistic topic modeling for HPC, ISC2019 HPC RESEARCH POSTER<\/i> (2019)."},{"key":"17","doi-asserted-by":"crossref","unstructured":"[17] Papadimitriou, C., Raghavan, P., Tamaki, H. and Vempala, S.: Latent Semantic Indexing: A probabilistic analysis (Postscript), Proc. ACM PODS<\/i>, pp.159-168, DOI: 10.1145\/275487.275505, ISBN 978-0897919968 (1998).","DOI":"10.1145\/275487.275505"},{"key":"18","unstructured":"[18] Netti, A., Galleguillos, C., Kiziltan, Z., Sirbu, A. and Babaoglu, O.: Heterogeneity-aware resource allocation in HPC systems, Proc. ISC'18<\/i>, Vol.10876 of Lecture Notes in Computer Science, pp.3-21, Springer (2018)."},{"key":"19","unstructured":"[19] Le, Q., Ranzato, M., Monga, R., Devin, M., Corrado, G., Chen, K., Dean, J. and Ng, A.: Building high-level features using large scale unsupervised learning, Proc. ICML<\/i>, pp.81-88 (2012), available from <http:\/\/research.google.com\/archive\/unsupervised_icml2012.pdf>."},{"key":"20","unstructured":"[20] Sutskever, I., Vinyals, O. and Le, Q.V.: Sequence to sequence learning with neural networks, Advances in Neural Information Processing Systems<\/i>, pp.3104-3112 (2014)."},{"key":"21","unstructured":"[21] Alex, G., Abdel-Rahman, M. and Geoffrey, H.: Speech recognition with deep recurrent neural networks, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing<\/i> (ICASSP<\/i>), pp.6645-6649, IEEE (2013)."},{"key":"22","unstructured":"[22] Zhang, G., Patuwo, B.E. and Hu, M.Y.: Forecasting with artificial neural networks: The state of the art, International Journal of Forecasting<\/i>, Vol.14, No.1, pp.35-62 (1998)."},{"key":"23","unstructured":"[23] Flunkert, V., Salinas, D. and Gasthaus, J.: DeepAR: Probabilistic forecasting with autoregressive recurrent networks, arXiv preprint arXiv:1704.04110 (2017)."},{"key":"24","unstructured":"[24] Steinhaus, H.: Sur la division des corps materiels en parties (French), Bull. Acad. Polon. Sci.<\/i>, Vol.4, No.12, pp.801-804, MR 0090073, Zbl 0079.16403 (1957)."},{"key":"25","unstructured":"[25] Yamamoto, K., Tsujita, Y., Uno, A.: Classifying Jobs and Prediciting Applications in HPC Systems, ISC High Performance 2018: High Performance Computing<\/i>, pp.81-99 (2018)."},{"key":"26","doi-asserted-by":"publisher","unstructured":"[26] Thorndike, R.L.: Who Belongs in the Family?, Psychometrika, Vol.18, No.4, pp.267-276, DOI: 10.1007\/BF02289263 (Dec. 1953).","DOI":"10.1007\/BF02289263"},{"key":"27","unstructured":"[27] Storlie, C., Sexton, J., Pakin, S., et al.: Modeling and predicting power consumption of high performance computing jobs, arXiv preprint arXiv:1412.5247 (2014)."},{"key":"28","unstructured":"[28] Li, Y., Hu, H., Wen, Y. and Zhang, J.: Learning-based power prediction for data centre operations via deep neural networks, Proc. 5th International Workshop on Energy Efficient Data Centres<\/i>, No.6, ACM (2016)."},{"key":"29","unstructured":"[29] Connor, J.T., Atlas, L.E. and Martin, R.D.: Recurrent networks and NARMA modeling, Advances in Neural Information Processing Systems 4, Moody, J.E., Hanson, S.J. and Lippmann, R.P. (Eds.) San Matteo, CA: Morgan Kauffman, pp.301-308 (1992)."},{"key":"30","unstructured":"[30] Giles, C.L., Lawrence, S. and Tsoi, A.C.: Noisy time series prediction using recurrent neural networks and grammatical inference, Machine Learning<\/i>, Vol.44, No.1-2, pp.161-183 (2001)."},{"key":"31","unstructured":"[31] Jaeger, H. and Haas, H.: Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication, Science<\/i>, Vol.304, No.5667, pp.78-80 (2004)."},{"key":"32","unstructured":"[32] Hsieh, T.J., Hsiao, H.F. and Yeh, W.C.: Forecasting stock markets using wavelet transforms and recurrent neural networks: An integrated system based on artificial bee colony algorithm, Applied soft Computing<\/i>, Vol.11, No.2, pp.2510-2525 (2011)."},{"key":"33","unstructured":"[33] Langkvist, M., Karlsson, L. and Loutfi, A.: A review of unsupervised feature learning and deep learning for time-series modeling, Pattern Recognition Letters<\/i>, Vol.42, pp.11-24 (2014)."},{"key":"34","unstructured":"[34] Shao, X., Ma, D., Liu, Y. and Yin, Q.: Short-term forecast of stock price of multi-branch LSTM based on K-means, 4th International Conference on Systems and Informatics<\/i> (ICSAI<\/i>), pp.1546-1551 (2017)."}],"container-title":["Journal of Information Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/ipsjjip\/29\/0\/29_283\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,12,1]],"date-time":"2021-12-01T01:08:25Z","timestamp":1638320905000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/ipsjjip\/29\/0\/29_283\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"references-count":34,"journal-issue":{"issue":"0","published-print":{"date-parts":[[2021]]}},"URL":"https:\/\/doi.org\/10.2197\/ipsjjip.29.283","relation":{},"ISSN":["1882-6652"],"issn-type":[{"value":"1882-6652","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021]]}}}