{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,15]],"date-time":"2024-03-15T00:34:55Z","timestamp":1710462895965},"reference-count":20,"publisher":"The Open Journal","issue":"95","license":[{"start":{"date-parts":[[2024,3,14]],"date-time":"2024-03-14T00:00:00Z","timestamp":1710374400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"},{"start":{"date-parts":[[2024,3,14]],"date-time":"2024-03-14T00:00:00Z","timestamp":1710374400000},"content-version":"am","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"},{"start":{"date-parts":[[2024,3,14]],"date-time":"2024-03-14T00:00:00Z","timestamp":1710374400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["JOSS"],"published-print":{"date-parts":[[2024,3,14]]},"DOI":"10.21105\/joss.05584","type":"journal-article","created":{"date-parts":[[2024,3,14]],"date-time":"2024-03-14T17:04:47Z","timestamp":1710435887000},"page":"5584","source":"Crossref","is-referenced-by-count":0,"title":["WAVI.jl: Ice Sheet Modelling in Julia"],"prefix":"10.21105","volume":"9","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8381-5317","authenticated-orcid":false,"given":"Alexander T.","family":"Bradley","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3762-8219","authenticated-orcid":false,"given":"Robert J.","family":"Arthern","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3118-9902","authenticated-orcid":false,"given":"David T.","family":"Bett","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8131-4946","authenticated-orcid":false,"given":"C. Rosie","family":"Williams","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3731-2377","authenticated-orcid":false,"given":"James","family":"Byrne","sequence":"additional","affiliation":[]}],"member":"8722","reference":[{"issue":"7857","key":"Edwards2021","doi-asserted-by":"publisher","DOI":"10.1038\/s41586-021-03302-y","article-title":"Projected land ice contributions to\ntwenty-first-century sea level rise","volume":"593","author":"Edwards","year":"2021","unstructured":"Edwards, T. L., Nowicki, S.,\nMarzeion, B., Hock, R., Goelzer, H., Seroussi, H., Jourdain, N. C.,\nSlater, D. A., Turner, F. E., Smith, C. J., & others. (2021).\nProjected land ice contributions to twenty-first-century sea level rise.\nNature, 593(7857), 74\u201382.\nhttps:\/\/doi.org\/10.1038\/s41586-021-03302-y","journal-title":"Nature"},{"issue":"2","key":"Favier2014","doi-asserted-by":"publisher","DOI":"10.1038\/nclimate2094","article-title":"Retreat of Pine Island Glacier controlled by\nmarine ice-sheet instability","volume":"4","author":"Favier","year":"2014","unstructured":"Favier, L., Durand, G., Cornford, S.\nL., Gudmundsson, G. H., Gagliardini, O., Gillet-Chaulet, F., Zwinger,\nT., Payne, A., & Le Brocq, A. M. (2014). Retreat of Pine Island\nGlacier controlled by marine ice-sheet instability. Nature Climate\nChange, 4(2), 117\u2013121.\nhttps:\/\/doi.org\/10.1038\/nclimate2094","journal-title":"Nature Climate Change"},{"issue":"7857","key":"DeConto2021","doi-asserted-by":"publisher","DOI":"10.1038\/s41586-021-03427-0","article-title":"The Paris Climate Agreement and future\nsea-level rise from Antarctica","volume":"593","author":"DeConto","year":"2021","unstructured":"DeConto, R. M., Pollard, D., Alley,\nR. B., Velicogna, I., Gasson, E., Gomez, N., Sadai, S., Condron, A.,\nGilford, D. M., Ashe, E. L., & others. (2021). The Paris Climate\nAgreement and future sea-level rise from Antarctica. Nature, 593(7857),\n83\u201389.\nhttps:\/\/doi.org\/10.1038\/s41586-021-03427-0","journal-title":"Nature"},{"issue":"1","key":"DeRydt2021","doi-asserted-by":"publisher","DOI":"10.5194\/tc-15-113-2021","article-title":"Drivers of Pine Island Glacier speed-up\nbetween 1996 and 2016","volume":"15","author":"De Rydt","year":"2021","unstructured":"De Rydt, J., Reese, R., Paolo, F. S.,\n& Gudmundsson, G. H. (2021). Drivers of Pine Island Glacier speed-up\nbetween 1996 and 2016. The Cryosphere, 15(1), 113\u2013132.\nhttps:\/\/doi.org\/10.5194\/tc-15-113-2021","journal-title":"The Cryosphere"},{"key":"Shapero","doi-asserted-by":"publisher","DOI":"10.5281\/zenodo.4318147","article-title":"icepack: glacier flow modeling with the\nfinite element method in Python","author":"Shapero","year":"2020","unstructured":"Shapero, D., Badgeley, J., Ham, D.\nA., Lilien, D., & Hoffman, A. (2020). icepack: glacier flow modeling\nwith the finite element method in Python (Version v1.0.0). Zenodo.\nhttps:\/\/doi.org\/10.5281\/zenodo.4318147"},{"issue":"24","key":"Joughin2021","doi-asserted-by":"publisher","DOI":"10.1126\/sciadv.abg3080","article-title":"Ice-shelf retreat drives recent Pine Island\nGlacier speedup","volume":"7","author":"Joughin","year":"2021","unstructured":"Joughin, I., Shapero, D., Smith, B.,\nDutrieux, P., & Barham, M. (2021). Ice-shelf retreat drives recent\nPine Island Glacier speedup. Science Advances, 7(24), eabg3080.\nhttps:\/\/doi.org\/10.1126\/sciadv.abg3080","journal-title":"Science Advances"},{"issue":"F3","key":"Schoof2007","doi-asserted-by":"publisher","DOI":"10.1029\/2006JF000664","article-title":"Ice sheet grounding line dynamics: Steady\nstates, stability, and hysteresis","volume":"112","author":"Schoof","year":"2007","unstructured":"Schoof, C. (2007). Ice sheet\ngrounding line dynamics: Steady states, stability, and hysteresis.\nJournal of Geophysical Research: Earth Surface, 112(F3).\nhttps:\/\/doi.org\/10.1029\/2006JF000664","journal-title":"Journal of Geophysical Research: Earth\nSurface"},{"issue":"7","key":"Arthern2015","doi-asserted-by":"publisher","DOI":"10.1002\/2014JF003239","article-title":"Flow speed within the Antarctic ice sheet and\nits controls inferred from satellite observations","volume":"120","author":"Arthern","year":"2015","unstructured":"Arthern, R. J., Hindmarsh, R. C.,\n& Williams, C. R. (2015). Flow speed within the Antarctic ice sheet\nand its controls inferred from satellite observations. Journal of\nGeophysical Research: Earth Surface, 120(7), 1171\u20131188.\nhttps:\/\/doi.org\/10.1002\/2014JF003239","journal-title":"Journal of Geophysical Research: Earth\nSurface"},{"issue":"5","key":"Arthern2017","doi-asserted-by":"publisher","DOI":"10.1002\/2017GL072514","article-title":"The sensitivity of West Antarctica to the\nsubmarine melting feedback","volume":"44","author":"Arthern","year":"2017","unstructured":"Arthern, R. J., & Williams, C. R.\n(2017). The sensitivity of West Antarctica to the submarine melting\nfeedback. Geophysical Research Letters, 44(5), 2352\u20132359.\nhttps:\/\/doi.org\/10.1002\/2017GL072514","journal-title":"Geophysical Research Letters"},{"issue":"201","key":"Goldberg2011","doi-asserted-by":"publisher","DOI":"10.3189\/002214311795306763","article-title":"A variationally derived, depth-integrated\napproximation to a higher-order glaciological flow model","volume":"57","author":"Goldberg","year":"2011","unstructured":"Goldberg, D. N. (2011). A\nvariationally derived, depth-integrated approximation to a higher-order\nglaciological flow model. Journal of Glaciology, 57(201), 157\u2013170.\nhttps:\/\/doi.org\/10.3189\/002214311795306763","journal-title":"Journal of Glaciology"},{"issue":"4","key":"AsayDavis2017","doi-asserted-by":"publisher","DOI":"10.1007\/s40641-017-0071-0","article-title":"Developments in simulating and parameterizing\ninteractions between the Southern Ocean and the Antarctic ice\nsheet","volume":"3","author":"Asay-Davis","year":"2017","unstructured":"Asay-Davis, X. S., Jourdain, N. C.,\n& Nakayama, Y. (2017). Developments in simulating and parameterizing\ninteractions between the Southern Ocean and the Antarctic ice sheet.\nCurrent Climate Change Reports, 3(4), 316\u2013329.\nhttps:\/\/doi.org\/10.1007\/s40641-017-0071-0","journal-title":"Current Climate Change\nReports"},{"issue":"C3","key":"Marshall1997","doi-asserted-by":"publisher","DOI":"10.1029\/96JC02776","article-title":"Hydrostatic, quasi-hydrostatic, and\nnonhydrostatic ocean modeling","volume":"102","author":"Marshall","year":"1997","unstructured":"Marshall, J., Hill, C., Perelman, L.,\n& Adcroft, A. (1997). Hydrostatic, quasi-hydrostatic, and\nnonhydrostatic ocean modeling. Journal of Geophysical Research: Oceans,\n102(C3), 5733\u20135752.\nhttps:\/\/doi.org\/10.1029\/96JC02776","journal-title":"Journal of Geophysical Research:\nOceans"},{"issue":"7","key":"Cornford2020","doi-asserted-by":"publisher","DOI":"10.5194\/tc-14-2283-2020","article-title":"Results of the third Marine Ice Sheet Model\nIntercomparison Project (MISMIP+)","volume":"14","author":"Cornford","year":"2020","unstructured":"Cornford, S. L., Seroussi, H.,\nAsay-Davis, X. S., Gudmundsson, G. H., Arthern, R., Borstad, C.,\nChristmann, J., Dias dos Santos, T., Feldmann, J., Goldberg, D., &\nothers. (2020). Results of the third Marine Ice Sheet Model\nIntercomparison Project (MISMIP+). The Cryosphere, 14(7), 2283\u20132301.\nhttps:\/\/doi.org\/10.5194\/tc-14-2283-2020","journal-title":"The Cryosphere"},{"issue":"F1","key":"Larour2012","doi-asserted-by":"publisher","DOI":"10.1029\/2011JF002140","article-title":"Continental scale, high order, high spatial\nresolution, ice sheet modeling using the Ice Sheet System Model\n(ISSM)","volume":"117","author":"Larour","year":"2012","unstructured":"Larour, E., Seroussi, H., Morlighem,\nM., & Rignot, E. (2012). Continental scale, high order, high spatial\nresolution, ice sheet modeling using the Ice Sheet System Model (ISSM).\nJournal of Geophysical Research: Earth Surface, 117(F1).\nhttps:\/\/doi.org\/10.1029\/2011JF002140","journal-title":"Journal of Geophysical Research: Earth\nSurface"},{"issue":"F3","key":"Bueler2009","doi-asserted-by":"publisher","DOI":"10.1029\/2008JF001179","article-title":"Shallow shelf approximation as a \u201csliding\nlaw\u201d in a thermomechanically coupled ice sheet model","volume":"114","author":"Bueler","year":"2009","unstructured":"Bueler, E., & Brown, J. (2009).\nShallow shelf approximation as a \u201csliding law\u201d in a thermomechanically\ncoupled ice sheet model. Journal of Geophysical Research: Earth Surface,\n114(F3). https:\/\/doi.org\/10.1029\/2008JF001179","journal-title":"Journal of Geophysical Research: Earth\nSurface"},{"issue":"1","key":"Cornford2013","doi-asserted-by":"publisher","DOI":"10.1016\/j.jcp.2012.08.037","article-title":"Adaptive mesh, finite volume modeling of\nmarine ice sheets","volume":"232","author":"Cornford","year":"2013","unstructured":"Cornford, S. L., Martin, D. F.,\nGraves, D. T., Ranken, D. F., Le Brocq, A. M., Gladstone, R. M., Payne,\nA. J., Ng, E. G., & Lipscomb, W. H. (2013). Adaptive mesh, finite\nvolume modeling of marine ice sheets. Journal of Computational Physics,\n232(1), 529\u2013549.\nhttps:\/\/doi.org\/10.1016\/j.jcp.2012.08.037","journal-title":"Journal of Computational\nPhysics"},{"issue":"4","key":"Gagliardini2013","doi-asserted-by":"publisher","DOI":"10.5194\/gmd-6-1299-2013","article-title":"Capabilities and performance of Elmer\/Ice, a\nnew-generation ice sheet model","volume":"6","author":"Gagliardini","year":"2013","unstructured":"Gagliardini, O., Zwinger, T.,\nGillet-Chaulet, F., Durand, G., Favier, L., Fleurian, B. de, Greve, R.,\nMalinen, M., Mart\u0131\u0301n, C., R\u00e5back, P., & others. (2013). Capabilities\nand performance of Elmer\/Ice, a new-generation ice sheet model.\nGeoscientific Model Development, 6(4), 1299\u20131318.\nhttps:\/\/doi.org\/10.5194\/gmd-6-1299-2013","journal-title":"Geoscientific Model\nDevelopment"},{"key":"Gudmundsson2019","doi-asserted-by":"publisher","DOI":"10.5281\/zenodo.3706624","article-title":"\u00daa: A large-scale ice-flow\nmodel","author":"Gudmundsson","year":"2019","unstructured":"Gudmundsson, H. G. (2019). \u00daa: A\nlarge-scale ice-flow model. https:\/\/github.com\/GHilmarG\/UaSource.\nhttps:\/\/doi.org\/10.5281\/zenodo.3706624"},{"issue":"6","key":"Bamber2018","doi-asserted-by":"publisher","DOI":"10.1088\/1748-9326\/aac2f0","article-title":"The land ice contribution to sea level during\nthe satellite era","volume":"13","author":"Bamber","year":"2018","unstructured":"Bamber, J. L., Westaway, R. M.,\nMarzeion, B., & Wouters, B. (2018). The land ice contribution to sea\nlevel during the satellite era. Environmental Research Letters, 13(6),\n063008. https:\/\/doi.org\/10.1088\/1748-9326\/aac2f0","journal-title":"Environmental Research\nLetters"},{"issue":"7395","key":"Pritchard2012","doi-asserted-by":"publisher","DOI":"10.1038\/nature10968","article-title":"Antarctic ice-sheet loss driven by basal\nmelting of ice shelves","volume":"484","author":"Pritchard","year":"2012","unstructured":"Pritchard, H. D., Ligtenberg, S. R.\nM., Fricker, H. A., Vaughan, D. G., Broeke, M. R. van den, & Padman,\nL. (2012). Antarctic ice-sheet loss driven by basal melting of ice\nshelves. Nature, 484(7395), 502\u2013505.\nhttps:\/\/doi.org\/10.1038\/nature10968","journal-title":"Nature"}],"container-title":["Journal of Open Source Software"],"original-title":[],"link":[{"URL":"https:\/\/joss.theoj.org\/papers\/10.21105\/joss.05584.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,3,14]],"date-time":"2024-03-14T17:04:51Z","timestamp":1710435891000},"score":1,"resource":{"primary":{"URL":"https:\/\/joss.theoj.org\/papers\/10.21105\/joss.05584"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3,14]]},"references-count":20,"journal-issue":{"issue":"95","published-online":{"date-parts":[[2024,3]]}},"alternative-id":["10.21105\/joss.05584"],"URL":"https:\/\/doi.org\/10.21105\/joss.05584","relation":{"has-review":[{"id-type":"uri","id":"https:\/\/github.com\/openjournals\/joss-reviews\/issues\/5584","asserted-by":"subject"}],"references":[{"id-type":"doi","id":"10.5281\/zenodo.10723504","asserted-by":"subject"}]},"ISSN":["2475-9066"],"issn-type":[{"value":"2475-9066","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,3,14]]}}}