{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,3]],"date-time":"2024-03-03T12:02:17Z","timestamp":1709467337069},"reference-count":12,"publisher":"The Open Journal","issue":"89","license":[{"start":{"date-parts":[[2023,9,22]],"date-time":"2023-09-22T00:00:00Z","timestamp":1695340800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"},{"start":{"date-parts":[[2023,9,22]],"date-time":"2023-09-22T00:00:00Z","timestamp":1695340800000},"content-version":"am","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"},{"start":{"date-parts":[[2023,9,22]],"date-time":"2023-09-22T00:00:00Z","timestamp":1695340800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["JOSS"],"published-print":{"date-parts":[[2023,9,22]]},"DOI":"10.21105\/joss.05499","type":"journal-article","created":{"date-parts":[[2023,9,22]],"date-time":"2023-09-22T03:44:06Z","timestamp":1695354246000},"page":"5499","source":"Crossref","is-referenced-by-count":0,"title":["PreliZ: A tool-box for prior elicitation"],"prefix":"10.21105","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1491-7330","authenticated-orcid":false,"given":"Alejandro","family":"Icazatti","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1847-9481","authenticated-orcid":false,"given":"Oriol","family":"Abril-Pla","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7950-1355","authenticated-orcid":false,"given":"Arto","family":"Klami","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7419-8978","authenticated-orcid":false,"given":"Osvaldo A","family":"Martin","sequence":"additional","affiliation":[]}],"member":"8722","reference":[{"issue":"33","key":"kumar:2019","doi-asserted-by":"publisher","DOI":"10.21105\/joss.01143","article-title":"ArviZ a unified library for exploratory\nanalysis of bayesian models in python","volume":"4","author":"Kumar","year":"2019","unstructured":"Kumar, R., Carroll, C., Hartikainen,\nA., & Martin, O. (2019). ArviZ a unified library for exploratory\nanalysis of bayesian models in python. Journal of Open Source Software,\n4(33), 1143. https:\/\/doi.org\/10.21105\/joss.01143","journal-title":"Journal of Open Source\nSoftware"},{"key":"sarma:2020","doi-asserted-by":"publisher","DOI":"10.1145\/3313831.3376377","article-title":"Prior Setting in Practice: Strategies and\nRationales Used in Choosing Prior Distributions for Bayesian\nAnalysis","author":"Sarma","year":"2020","unstructured":"Sarma, A., & Kay, M. (2020).\nPrior Setting in Practice: Strategies and Rationales Used in Choosing\nPrior Distributions for Bayesian Analysis. Conference on Human Factors\nin Computing Systems, 1\u201312.\nhttps:\/\/doi.org\/10.1145\/3313831.3376377","journal-title":"Conference on Human Factors in Computing\nSystems"},{"key":"martin:2021","isbn-type":"print","doi-asserted-by":"publisher","DOI":"10.1201\/9781003019169","volume-title":"Bayesian Modeling and Computation in\nPython","author":"Martin","year":"2021","unstructured":"Martin, O. A., Kumar, R., & Lao,\nJ. (2021). Bayesian Modeling and Computation in Python.\nhttps:\/\/doi.org\/10.1201\/9781003019169","ISBN":"http:\/\/id.crossref.org\/isbn\/9780367894368"},{"key":"martin:2022","doi-asserted-by":"publisher","DOI":"10.1007\/s11104-022-05329-0","article-title":"A call for changing data analysis practices:\nFrom philosophy and comprehensive reporting to modeling approaches and\nback","author":"Martin","year":"2022","unstructured":"Martin, O. A., & Teste, F. P.\n(2022). A call for changing data analysis practices: From philosophy and\ncomprehensive reporting to modeling approaches and back. Plant and Soil.\nhttps:\/\/doi.org\/10.1007\/s11104-022-05329-0","journal-title":"Plant and Soil","ISSN":"http:\/\/id.crossref.org\/issn\/1573-5036","issn-type":"print"},{"key":"gelman:2013","isbn-type":"print","doi-asserted-by":"publisher","DOI":"10.1201\/b16018","volume-title":"Bayesian Data Analysis, Third\nEdition","author":"Gelman","year":"2013","unstructured":"Gelman, A., Carlin, J. B., Stern, H.\nS., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian Data\nAnalysis, Third Edition (3 edition). Chapman; Hall\/CRC.\nhttps:\/\/doi.org\/10.1201\/b16018","ISBN":"http:\/\/id.crossref.org\/isbn\/9781439840955"},{"key":"morris:2014","doi-asserted-by":"publisher","DOI":"10.1016\/j.envsoft.2013.10.010","article-title":"A web-based tool for eliciting probability\ndistributions from experts","volume":"52","author":"Morris","year":"2014","unstructured":"Morris, D. E., Oakley, J. E., &\nCrowe, J. A. (2014). A web-based tool for eliciting probability\ndistributions from experts. Environmental Modelling & Software, 52,\n1\u20134.\nhttps:\/\/doi.org\/10.1016\/j.envsoft.2013.10.010","journal-title":"Environmental Modelling &\nSoftware","ISSN":"http:\/\/id.crossref.org\/issn\/1364-8152","issn-type":"print"},{"key":"jupyter-matplotlib_2019","article-title":"Ipympl","year":"2019","unstructured":"Ipympl. (2019). Matplotlib\nDevelopers. https:\/\/github.com\/matplotlib\/ipympl"},{"key":"interactive_Jupyter_widgets","article-title":"Ipywidgets, a GitHub\nrepository","author":"Jupyter widgets community","year":"2015","unstructured":"Jupyter widgets community. (2015).\nIpywidgets, a GitHub repository.\nhttps:\/\/github.com\/jupyter-widgets\/ipywidgets"},{"issue":"3","key":"Hunter:2007","doi-asserted-by":"publisher","DOI":"10.1109\/MCSE.2007.55","article-title":"Matplotlib: A 2D graphics\nenvironment","volume":"9","author":"Hunter","year":"2007","unstructured":"Hunter, J. D. (2007). Matplotlib: A\n2D graphics environment. Computing in Science & Engineering, 9(3),\n90\u201395. https:\/\/doi.org\/10.1109\/MCSE.2007.55","journal-title":"Computing in Science &\nEngineering"},{"key":"2020NumPy-Array","doi-asserted-by":"publisher","DOI":"10.1038\/s41586-020-2649-2","article-title":"Array programming with NumPy","volume":"585","author":"Harris","year":"2020","unstructured":"Harris, C. R., Millman, K. J., Walt,\nS. J. van der, Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E.,\nTaylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S.,\nKerkwijk, M. H. van, Brett, M., Haldane, A., Fern\u00e1ndez del R\u00edo, J.,\nWiebe, M., Peterson, P., \u2026 Oliphant, T. E. (2020). Array programming\nwith NumPy. Nature, 585, 357\u2013362.\nhttps:\/\/doi.org\/10.1038\/s41586-020-2649-2","journal-title":"Nature"},{"key":"2020SciPy-NMeth","doi-asserted-by":"publisher","DOI":"10.1038\/s41592-019-0686-2","article-title":"SciPy 1.0: Fundamental Algorithms for\nScientific Computing in Python","volume":"17","author":"Virtanen","year":"2020","unstructured":"Virtanen, P., Gommers, R., Oliphant,\nT. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson,\nP., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,\nJ., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R.,\nLarson, E., \u2026 SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental\nAlgorithms for Scientific Computing in Python. Nature Methods, 17,\n261\u2013272.\nhttps:\/\/doi.org\/10.1038\/s41592-019-0686-2","journal-title":"Nature Methods"},{"key":"mikkola:2021","doi-asserted-by":"publisher","DOI":"10.1214\/23-BA1381","article-title":"Prior Knowledge Elicitation: The Past,\nPresent, and Future","author":"Mikkola","year":"2023","unstructured":"Mikkola, P., Martin, O. A.,\nChandramouli, S., Hartmann, M., Pla, O. A., Thomas, O., Pesonen, H.,\nCorander, J., Vehtari, A., Kaski, S., B\u00fcrkner, P.-C., & Klami, A.\n(2023). Prior Knowledge Elicitation: The Past, Present, and Future.\nBayesian Analysis, 1\u201333.\nhttps:\/\/doi.org\/10.1214\/23-BA1381","journal-title":"Bayesian Analysis"}],"container-title":["Journal of Open Source Software"],"original-title":[],"link":[{"URL":"https:\/\/joss.theoj.org\/papers\/10.21105\/joss.05499.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,22]],"date-time":"2023-09-22T03:44:12Z","timestamp":1695354252000},"score":1,"resource":{"primary":{"URL":"https:\/\/joss.theoj.org\/papers\/10.21105\/joss.05499"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9,22]]},"references-count":12,"journal-issue":{"issue":"89","published-online":{"date-parts":[[2023,9]]}},"alternative-id":["10.21105\/joss.05499"],"URL":"https:\/\/doi.org\/10.21105\/joss.05499","relation":{"has-review":[{"id-type":"uri","id":"https:\/\/github.com\/openjournals\/joss-reviews\/issues\/5499","asserted-by":"subject"}],"references":[{"id-type":"doi","id":"10.5281\/zenodo.8368516","asserted-by":"subject"}]},"ISSN":["2475-9066"],"issn-type":[{"value":"2475-9066","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,9,22]]}}}