{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T13:13:29Z","timestamp":1726146809550},"reference-count":24,"publisher":"The Open Journal","issue":"84","license":[{"start":{"date-parts":[[2023,4,20]],"date-time":"2023-04-20T00:00:00Z","timestamp":1681948800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"},{"start":{"date-parts":[[2023,4,20]],"date-time":"2023-04-20T00:00:00Z","timestamp":1681948800000},"content-version":"am","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"},{"start":{"date-parts":[[2023,4,20]],"date-time":"2023-04-20T00:00:00Z","timestamp":1681948800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["JOSS"],"published-print":{"date-parts":[[2023,4,20]]},"DOI":"10.21105\/joss.05161","type":"journal-article","created":{"date-parts":[[2023,4,20]],"date-time":"2023-04-20T16:14:08Z","timestamp":1682007248000},"page":"5161","source":"Crossref","is-referenced-by-count":8,"title":["RxInfer: A Julia package for reactive real-time\nBayesian inference"],"prefix":"10.21105","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9655-7986","authenticated-orcid":false,"given":"Dmitry","family":"Bagaev","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0515-0465","authenticated-orcid":false,"given":"Albert","family":"Podusenko","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0839-174X","authenticated-orcid":false,"given":"Bert","family":"de Vries","sequence":"additional","affiliation":[]}],"member":"8722","reference":[{"key":"gelman_bayesian_2015","isbn-type":"print","doi-asserted-by":"publisher","DOI":"10.1201\/b16018","volume-title":"Bayesian Data Analysis","author":"Gelman","year":"2015","unstructured":"Gelman, A., Carlin, J. B., Stern, H.\nS., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2015). Bayesian Data\nAnalysis (3rd ed.). Chapman; Hall\/CRC.\nhttps:\/\/doi.org\/10.1201\/b16018","ISBN":"http:\/\/id.crossref.org\/isbn\/9780429113079"},{"key":"salimans_markov_nodate","article-title":"Markov Chain Monte Carlo and Variational\nInference:Bridging the Gap","author":"Salimans","unstructured":"Salimans, T., Kingma, D. P., &\nWelling, M. (n.d.). Markov Chain Monte Carlo and Variational\nInference:Bridging the Gap. Bridging the Gap, 9.","journal-title":"Bridging the Gap"},{"issue":"518","key":"blei_variational_2017","doi-asserted-by":"publisher","DOI":"10.1080\/01621459.2017.1285773","article-title":"Variational Inference: A Review for\nStatisticians","volume":"112","author":"Blei","year":"2017","unstructured":"Blei, D. M., Kucukelbir, A., &\nMcAuliffe, J. D. (2017). Variational Inference: A Review for\nStatisticians. Journal of the American Statistical Association,\n112(518), 859\u2013877.\nhttps:\/\/doi.org\/10.1080\/01621459.2017.1285773","journal-title":"Journal of the American Statistical\nAssociation","ISSN":"http:\/\/id.crossref.org\/issn\/0162-1459","issn-type":"print"},{"issue":"1","key":"kucukelbir_automatic_2017","article-title":"Automatic Differentiation Variational\nInference","volume":"18","author":"Kucukelbir","year":"2017","unstructured":"Kucukelbir, A., Tran, D., Ranganath,\nR., Gelman, A., & Blei, D. M. (2017). Automatic Differentiation\nVariational Inference. Journal of Machine Learning Research, 18(1),\n430\u2013474.\nhttp:\/\/www.jmlr.org\/papers\/volume18\/16-107\/16-107.pdf","journal-title":"Journal of Machine Learning\nResearch"},{"key":"bamler_structured_2017","article-title":"Structured Black Box Variational Inference\nfor Latent Time Series Models","author":"Bamler","year":"2017","unstructured":"Bamler, R., & Mandt, S. (2017).\nStructured Black Box Variational Inference for Latent Time Series\nModels. arXiv:1707.01069 [Cs, Stat].\nhttp:\/\/arxiv.org\/abs\/1707.01069","journal-title":"arXiv:1707.01069 [cs, stat]"},{"issue":"1","key":"bezanson_julia_2017","doi-asserted-by":"publisher","DOI":"10.1137\/141000671","article-title":"Julia: A Fresh Approach to Numerical\nComputing","volume":"59","author":"Bezanson","year":"2017","unstructured":"Bezanson, J., Edelman, A., Karpinski,\nS., & Shah, V. (2017). Julia: A Fresh Approach to Numerical\nComputing. SIAM Review, 59(1), 65\u201398.\nhttps:\/\/doi.org\/10.1137\/141000671","journal-title":"SIAM Review","ISSN":"http:\/\/id.crossref.org\/issn\/0036-1445","issn-type":"print"},{"key":"bezanson_julia_2012","doi-asserted-by":"publisher","DOI":"10.48550\/arXiv.1209.5145","article-title":"Julia: A Fast Dynamic Language for Technical\nComputing","author":"Bezanson","year":"2012","unstructured":"Bezanson, J., Karpinski, S., Shah, V.\nB., & Edelman, A. (2012). Julia: A Fast Dynamic Language for\nTechnical Computing. arXiv:1209.5145 [Cs].\nhttps:\/\/doi.org\/10.48550\/arXiv.1209.5145","journal-title":"arXiv:1209.5145 [cs]"},{"key":"bagaev_reactive_2021","article-title":"Reactive Message Passing for Scalable\nBayesian Inference","author":"Bagaev","year":"2021","unstructured":"Bagaev, D., & Vries, B. de.\n(2021). Reactive Message Passing for Scalable Bayesian Inference.\narXiv:2112.13251 [Cs].\nhttp:\/\/arxiv.org\/abs\/2112.13251","journal-title":"arXiv:2112.13251 [cs]"},{"issue":"6","key":"podusenko_message_2021-1","doi-asserted-by":"publisher","DOI":"10.3390\/e23060683","article-title":"Message Passing-Based Inference for\nTime-Varying Autoregressive Models","volume":"23","author":"Podusenko","year":"2021","unstructured":"Podusenko, A., Kouw, W. M., &\nVries, B. de. (2021). Message Passing-Based Inference for Time-Varying\nAutoregressive Models. Entropy, 23(6), 683.\nhttps:\/\/doi.org\/10.3390\/e23060683","journal-title":"Entropy"},{"issue":"7","key":"senoz_variational_2021","doi-asserted-by":"publisher","DOI":"10.3390\/e23070807","article-title":"Variational Message Passing and Local\nConstraint Manipulation in Factor Graphs","volume":"23","author":"\u015een\u00f6z","year":"2021","unstructured":"\u015een\u00f6z, \u0130., Laar, T. van de, Bagaev,\nD., & Vries, B. de. (2021). Variational Message Passing and Local\nConstraint Manipulation in Factor Graphs. Entropy, 23(7), 807.\nhttps:\/\/doi.org\/10.3390\/e23070807","journal-title":"Entropy","ISSN":"http:\/\/id.crossref.org\/issn\/1099-4300","issn-type":"print"},{"key":"podusenko_aida_2021","doi-asserted-by":"publisher","DOI":"10.3389\/frsip.2022.842477","article-title":"AIDA: An Active Inference-based Design Agent\nfor Audio Processing Algorithms","author":"Podusenko","year":"2021","unstructured":"Podusenko, A., Erp, B. van, Koudahl,\nM., & Vries, B. de. (2021). AIDA: An Active Inference-based Design\nAgent for Audio Processing Algorithms. arXiv:2112.13366 [Cs, Eess,\nStat]. https:\/\/doi.org\/10.3389\/frsip.2022.842477","journal-title":"arXiv:2112.13366 [cs, eess,\nstat]"},{"key":"podusenko_message_2021","isbn-type":"print","doi-asserted-by":"publisher","DOI":"10.1109\/MLSP52302.2021.9596329","article-title":"Message Passing-Based Inference in the Gamma\nMixture Model","author":"Podusenko","year":"2021","unstructured":"Podusenko, A., Erp, B. van, Bagaev,\nD., \u015een\u00f6z, \u0130smail, & Vries, B. de. (2021). Message Passing-Based\nInference in the Gamma Mixture Model. 2021 IEEE 31st International\nWorkshop on Machine Learning for Signal Processing (MLSP), 1\u20136.\nhttps:\/\/doi.org\/10.1109\/MLSP52302.2021.9596329","ISBN":"http:\/\/id.crossref.org\/isbn\/9781728163383","journal-title":"2021 IEEE 31st International Workshop on\nMachine Learning for Signal Processing (MLSP)"},{"key":"podusenko_message_2022","doi-asserted-by":"publisher","DOI":"10.23919\/EUSIPCO55093.2022.9909828","article-title":"Message Passing-based Inference in Switching\nAutoregressive Models","author":"Podusenko","year":"2022","unstructured":"Podusenko, A., Erp, B. van, Bagaev,\nD., \u015fen\u00f6z, \u00cf., & Vries, B. de. (2022). Message Passing-based\nInference in Switching Autoregressive Models. 2022 30th European Signal\nProcessing Conference (EUSIPCO), 1497\u20131501.\nhttps:\/\/doi.org\/10.23919\/EUSIPCO55093.2022.9909828","journal-title":"2022 30th European Signal Processing\nConference (EUSIPCO)"},{"key":"van_erp_hybrid_2022","doi-asserted-by":"publisher","DOI":"10.23919\/EUSIPCO55093.2022.9909873","article-title":"Hybrid Inference with Invertible Neural\nNetworks in Factor Graphs","author":"Erp","year":"2022","unstructured":"Erp, B. van, & Vries, B. de.\n(2022). Hybrid Inference with Invertible Neural Networks in Factor\nGraphs. 2022 30th European Signal Processing Conference (EUSIPCO),\n1397\u20131401.\nhttps:\/\/doi.org\/10.23919\/EUSIPCO55093.2022.9909873","journal-title":"2022 30th European Signal Processing\nConference (EUSIPCO)"},{"key":"nguyen_efficient_2022","doi-asserted-by":"publisher","DOI":"10.1109\/SiPS55645.2022.9919250","article-title":"Efficient Model Evidence Computation in\nTree-structured Factor Graphs","author":"Nguyen","year":"2022","unstructured":"Nguyen, H. M. H., Erp, B. van, Senoz,\nI., & Vries, B. de. (2022). Efficient Model Evidence Computation in\nTree-structured Factor Graphs. 2022 IEEE Workshop on Signal Processing\nSystems (SiPS), 6.\nhttps:\/\/doi.org\/10.1109\/SiPS55645.2022.9919250","journal-title":"2022 IEEE Workshop on Signal Processing\nSystems (SiPS)"},{"key":"bagaev_dmitry_reactivempjl_2021","doi-asserted-by":"publisher","DOI":"10.5281\/ZENODO.6365000","article-title":"ReactiveMP.jl: A Julia package for automatic\nBayesian inference on a factor graph with reactive message\npassing.","author":"Bagaev","year":"2021","unstructured":"Bagaev, D. (2021). ReactiveMP.jl: A\nJulia package for automatic Bayesian inference on a factor graph with\nreactive message passing. Zenodo.\nhttps:\/\/doi.org\/10.5281\/ZENODO.6365000"},{"key":"sarkka_bayesian_2013","isbn-type":"print","doi-asserted-by":"crossref","DOI":"10.1017\/CBO9781139344203","volume-title":"Bayesian Filtering and\nSmoothing","author":"S\u00e4rkk\u00e4","year":"2013","unstructured":"S\u00e4rkk\u00e4, S. (2013). Bayesian Filtering\nand Smoothing. Cambridge University Press.\nISBN:\u00a0978-0-415-55809-9","ISBN":"http:\/\/id.crossref.org\/isbn\/9780415558099"},{"key":"AKBAYRAK2022235","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijar.2022.06.006","article-title":"Probabilistic programming with stochastic\nvariational message passing","volume":"148","author":"Akbayrak","year":"2022","unstructured":"Akbayrak, S., \u015een\u00f6z, \u0130., Sar\u0131, A.,\n& de Vries, B. (2022). Probabilistic programming with stochastic\nvariational message passing. International Journal of Approximate\nReasoning, 148, 235\u2013252.\nhttps:\/\/doi.org\/10.1016\/j.ijar.2022.06.006","journal-title":"International Journal of Approximate\nReasoning","ISSN":"http:\/\/id.crossref.org\/issn\/0888-613X","issn-type":"print"},{"key":"revels_forward-mode_2016","article-title":"Forward-Mode Automatic Differentiation in\nJulia","author":"Revels","year":"2016","unstructured":"Revels, J., Lubin, M., &\nPapamarkou, T. (2016). Forward-Mode Automatic Differentiation in Julia.\narXiv:1607.07892 [Cs].\nhttp:\/\/arxiv.org\/abs\/1607.07892","journal-title":"arXiv:1607.07892 [cs]"},{"key":"hoffman_nuts","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.1111.4246","article-title":"The no-u-turn sampler: Adaptively setting\npath lengths in hamiltonian monte carlo","author":"Hoffman","year":"2011","unstructured":"Hoffman, M. D., & Gelman, A.\n(2011). The no-u-turn sampler: Adaptively setting path lengths in\nhamiltonian monte carlo. arXiv.\nhttps:\/\/doi.org\/10.48550\/ARXIV.1111.4246"},{"key":"hmc_ref_2011","doi-asserted-by":"publisher","DOI":"10.1201\/b10905","volume-title":"Handbook of markov chain monte\ncarlo","year":"2011","unstructured":"Brooks, S., Gelman, A., Jones, G.,\n& Meng, X.-L. (Eds.). (2011). Handbook of markov chain monte carlo.\nChapman; Hall\/CRC.\nhttps:\/\/doi.org\/10.1201\/b10905"},{"key":"ge2018t","article-title":"Turing: A language for flexible probabilistic\ninference","author":"Ge","year":"2018","unstructured":"Ge, H., Xu, K., & Ghahramani, Z.\n(2018). Turing: A language for flexible probabilistic inference.\nInternational Conference on Artificial Intelligence and Statistics,\nAISTATS 2018, 9-11 April 2018, Playa Blanca, Lanzarote, Canary Islands,\nSpain, 1682\u20131690.\nhttp:\/\/proceedings.mlr.press\/v84\/ge18b.html","journal-title":"International conference on artificial\nintelligence and statistics, AISTATS 2018, 9-11 april 2018, playa\nblanca, lanzarote, canary islands, spain"},{"key":"standevteam","article-title":"Stan modeling language users guide and\nreference manual, version 2.31","author":"Stan Development Team","year":"2022","unstructured":"Stan Development Team. (2022). Stan\nmodeling language users guide and reference manual, version 2.31.\nhttps:\/\/mc-stan.org"},{"key":"standevteam_jl","article-title":"Stan modeling language in julia, version\n10.3.2","author":"Stan.jl Development Team","year":"2022","unstructured":"Stan.jl Development Team. (2022).\nStan modeling language in julia, version 10.3.2.\nhttps:\/\/github.com\/StanJulia\/Stan.jl"}],"container-title":["Journal of Open Source Software"],"original-title":[],"link":[{"URL":"https:\/\/joss.theoj.org\/papers\/10.21105\/joss.05161.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,4,20]],"date-time":"2023-04-20T16:14:17Z","timestamp":1682007257000},"score":1,"resource":{"primary":{"URL":"https:\/\/joss.theoj.org\/papers\/10.21105\/joss.05161"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4,20]]},"references-count":24,"journal-issue":{"issue":"84","published-online":{"date-parts":[[2023,4]]}},"alternative-id":["10.21105\/joss.05161"],"URL":"https:\/\/doi.org\/10.21105\/joss.05161","relation":{"has-review":[{"id-type":"uri","id":"https:\/\/github.com\/openjournals\/joss-reviews\/issues\/5161","asserted-by":"subject"}],"references":[{"id-type":"doi","id":"10.5281\/zenodo.7774921","asserted-by":"subject"}]},"ISSN":["2475-9066"],"issn-type":[{"value":"2475-9066","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,4,20]]}}}