{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,3]],"date-time":"2024-03-03T11:59:57Z","timestamp":1709467197729},"reference-count":16,"publisher":"The Open Journal","issue":"83","license":[{"start":{"date-parts":[[2023,3,21]],"date-time":"2023-03-21T00:00:00Z","timestamp":1679356800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"},{"start":{"date-parts":[[2023,3,21]],"date-time":"2023-03-21T00:00:00Z","timestamp":1679356800000},"content-version":"am","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"},{"start":{"date-parts":[[2023,3,21]],"date-time":"2023-03-21T00:00:00Z","timestamp":1679356800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["JOSS"],"published-print":{"date-parts":[[2023,3,21]]},"DOI":"10.21105\/joss.05023","type":"journal-article","created":{"date-parts":[[2023,3,21]],"date-time":"2023-03-21T11:34:35Z","timestamp":1679398475000},"page":"5023","source":"Crossref","is-referenced-by-count":0,"title":["High-performance neural population dynamics modeling\nenabled by scalable computational infrastructure"],"prefix":"10.21105","volume":"8","author":[{"given":"Aashish N.","family":"Patel","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9480-0698","authenticated-orcid":false,"given":"Andrew R.","family":"Sedler","sequence":"additional","affiliation":[]},{"given":"Jingya","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Chethan","family":"Pandarinath","sequence":"additional","affiliation":[]},{"given":"Vikash","family":"Gilja","sequence":"additional","affiliation":[]}],"member":"8722","reference":[{"issue":"11","key":"cunningham2014dimensionality","doi-asserted-by":"publisher","DOI":"10.1038\/nn.3776","article-title":"Dimensionality reduction for large-scale\nneural recordings","volume":"17","author":"Cunningham","year":"2014","unstructured":"Cunningham, J. P., & Yu, B. M.\n(2014). Dimensionality reduction for large-scale neural recordings.\nNature Neuroscience, 17(11), 1500\u20131509.\nhttps:\/\/doi.org\/10.1038\/nn.3776","journal-title":"Nature Neuroscience"},{"issue":"12","key":"keshtkaran2021large","doi-asserted-by":"publisher","DOI":"10.1038\/s41592-022-01675-0","article-title":"A large-scale neural network training\nframework for generalized estimation of single-trial population\ndynamics","volume":"19","author":"Keshtkaran","year":"2022","unstructured":"Keshtkaran, M. R., Sedler, A. R.,\nChowdhury, R. H., Tandon, R., Basrai, D., Nguyen, S. L., Sohn, H.,\nJazayeri, M., Miller, L. E., & Pandarinath, C. (2022). A large-scale\nneural network training framework for generalized estimation of\nsingle-trial population dynamics. Nature Methods, 19(12), 1572\u20131577.\nhttps:\/\/doi.org\/10.1038\/s41592-022-01675-0","journal-title":"Nature Methods"},{"issue":"10","key":"pandarinath2018inferring","doi-asserted-by":"publisher","DOI":"10.1038\/s41592-018-0109-9","article-title":"Inferring single-trial neural population\ndynamics using sequential auto-encoders","volume":"15","author":"Pandarinath","year":"2018","unstructured":"Pandarinath, C., O\u2019Shea, D. J.,\nCollins, J., Jozefowicz, R., Stavisky, S. D., Kao, J. C., Trautmann, E.\nM., Kaufman, M. T., Ryu, S. I., Hochberg, L. R., & others. (2018).\nInferring single-trial neural population dynamics using sequential\nauto-encoders. Nature Methods, 15(10), 805\u2013815.\nhttps:\/\/doi.org\/10.1038\/s41592-018-0109-9","journal-title":"Nature Methods"},{"key":"jaderberg2017population","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.2201.11941","article-title":"Population based training of neural\nnetworks","author":"Jaderberg","year":"2017","unstructured":"Jaderberg, M., Dalibard, V.,\nOsindero, S., Czarnecki, W. M., Donahue, J., Razavi, A., Vinyals, O.,\nGreen, T., Dunning, I., Simonyan, K., & others. (2017). Population\nbased training of neural networks.\nhttps:\/\/doi.org\/10.48550\/ARXIV.2201.11941"},{"key":"moritz2018ray","doi-asserted-by":"publisher","DOI":"10.48550\/arXiv.1712.05889","article-title":"Ray: A distributed framework for emerging\n\\{AI\\} applications","author":"Moritz","year":"2018","unstructured":"Moritz, P., Nishihara, R., Wang, S.,\nTumanov, A., Liaw, R., Liang, E., Elibol, M., Yang, Z., Paul, W.,\nJordan, M. I., & others. (2018). Ray: A distributed framework for\nemerging \\{AI\\} applications. 13th USENIX Symposium on Operating Systems\nDesign and Implementation (OSDI 18), 561\u2013577.\nhttps:\/\/doi.org\/10.48550\/arXiv.1712.05889","journal-title":"13th USENIX symposium on operating systems\ndesign and implementation (OSDI 18)"},{"key":"george2020katib","doi-asserted-by":"publisher","DOI":"10.48550\/arXiv.2006.02085","article-title":"A scalable and cloud-native hyperparameter\ntuning system","author":"George","year":"2020","unstructured":"George, J., Gao, C., Liu, R., Liu, H.\nG., Tang, Y., Pydipaty, R., & Saha, A. K. (2020). A scalable and\ncloud-native hyperparameter tuning system.\nhttps:\/\/doi.org\/10.48550\/arXiv.2006.02085"},{"key":"churchland2021mc_maze","article-title":"MC_maze: Macaque primary motor and dorsal\npremotor cortex spiking activity during delayed reaching","author":"Churchland","year":"2021","unstructured":"Churchland, M., & Kaufman, M.\n(2021). MC_maze: Macaque primary motor and dorsal premotor cortex\nspiking activity during delayed reaching (Version 0.220113.0400) [Data\nset]. DANDI archive.\nhttps:\/\/dandiarchive.org\/dandiset\/000128\/0.220113.0400"},{"key":"pei2021neural","doi-asserted-by":"publisher","DOI":"10.48550\/arXiv.2109.04463","article-title":"Neural latents benchmark \u201821: Evaluating\nlatent variable models of neural population activity","volume":"1","author":"Pei","year":"2021","unstructured":"Pei, F., Ye, J., Zoltowski, D.,\nZoltowski, D., Wu, A., Chowdhury, R., Sohn, H., ODoherty, J., Shenoy, K.\nV., Kaufman, M., Churchland, M., Jazayeri, M., Miller, L., Pillow, J.,\nPark, I. M., Dyer, E., & Pandarinath, C. (2021). Neural latents\nbenchmark \u201821: Evaluating latent variable models of neural population\nactivity. In J. Vanschoren & S. Yeung (Eds.), Proceedings of the\nneural information processing systems track on datasets and benchmarks\n(Vol. 1).\nhttps:\/\/doi.org\/10.48550\/arXiv.2109.04463","journal-title":"Proceedings of the neural information\nprocessing systems track on datasets and benchmarks"},{"key":"keshtkaran2019enabling","article-title":"Enabling hyperparameter optimization in\nsequential autoencoders for spiking neural data","volume":"32","author":"Keshtkaran","year":"2019","unstructured":"Keshtkaran, M. R., & Pandarinath,\nC. (2019). Enabling hyperparameter optimization in sequential\nautoencoders for spiking neural data. In H. Wallach, H. Larochelle, A.\nBeygelzimer, F. dAlch\u00e9-Buc, E. Fox, & R. Garnett (Eds.), Advances in\nneural information processing systems (Vol. 32). Curran Associates, Inc.\nhttps:\/\/proceedings.neurips.cc\/paper\/2019\/file\/6948bd44c91acd2b54ecdd1b132f10fb-Paper.pdf","journal-title":"Advances in neural information processing\nsystems"},{"issue":"7858","key":"willett2021high","doi-asserted-by":"publisher","DOI":"10.1038\/s41586-021-03506-2","article-title":"High-performance brain-to-text communication\nvia handwriting","volume":"593","author":"Willett","year":"2021","unstructured":"Willett, F. R., Avansino, D. T.,\nHochberg, L. R., Henderson, J. M., & Shenoy, K. V. (2021).\nHigh-performance brain-to-text communication via handwriting. Nature,\n593(7858), 249\u2013254.\nhttps:\/\/doi.org\/10.1038\/s41586-021-03506-2","journal-title":"Nature"},{"key":"yu2021fast","doi-asserted-by":"publisher","DOI":"10.7554\/eLife.66410","article-title":"Fast deep neural correspondence for tracking\nand identifying neurons in c. Elegans using semi-synthetic\ntraining","volume":"10","author":"Yu","year":"2021","unstructured":"Yu, X., Creamer, M. S., Randi, F.,\nSharma, A. K., Linderman, S. W., & Leifer, A. M. (2021). Fast deep\nneural correspondence for tracking and identifying neurons in c. Elegans\nusing semi-synthetic training. eLife, 10, e66410.\nhttps:\/\/doi.org\/10.7554\/eLife.66410","journal-title":"eLife"},{"key":"vyas2020computation","doi-asserted-by":"publisher","DOI":"10.1146\/annurev-neuro-092619-094115","article-title":"Computation through neural population\ndynamics","volume":"43","author":"Vyas","year":"2020","unstructured":"Vyas, S., Golub, M. D., Sussillo, D.,\n& Shenoy, K. V. (2020). Computation through neural population\ndynamics. Annual Review of Neuroscience, 43, 249.\nhttps:\/\/doi.org\/10.1146\/annurev-neuro-092619-094115","journal-title":"Annual Review of Neuroscience"},{"issue":"4","key":"golub2018learning","doi-asserted-by":"publisher","DOI":"10.1038\/s41593-018-0095-3","article-title":"Learning by neural\nreassociation","volume":"21","author":"Golub","year":"2018","unstructured":"Golub, M. D., Sadtler, P. T., Oby, E.\nR., Quick, K. M., Ryu, S. I., Tyler-Kabara, E. C., Batista, A. P.,\nChase, S. M., & Yu, B. M. (2018). Learning by neural reassociation.\nNature Neuroscience, 21(4), 607\u2013616.\nhttps:\/\/doi.org\/10.1038\/s41593-018-0095-3","journal-title":"Nature Neuroscience"},{"key":"kubeflow","article-title":"Kubeflow: Machine learning toolkit for\nkubernetes","year":"2018","unstructured":"Kubeflow: Machine learning toolkit\nfor kubernetes (Version\nswh:1:dir:086e4c66360c96571dccaa8d12645d4316a6b991). (2018).\nhttps:\/\/github.com\/kubeflow\/kubeflow"},{"issue":"7","key":"vu2018shared","doi-asserted-by":"publisher","DOI":"10.1523\/JNEUROSCI.0508-17.2018","article-title":"A shared vision for machine learning in\nneuroscience","volume":"38","author":"Vu","year":"2018","unstructured":"Vu, M.-A. T., Adal\u0131, T., Ba, D.,\nBuzs\u00e1ki, G., Carlson, D., Heller, K., Liston, C., Rudin, C., Sohal, V.\nS., Widge, A. S., & others. (2018). A shared vision for machine\nlearning in neuroscience. Journal of Neuroscience, 38(7), 1601\u20131607.\nhttps:\/\/doi.org\/10.1523\/JNEUROSCI.0508-17.2018","journal-title":"Journal of Neuroscience"},{"issue":"2","key":"credit","doi-asserted-by":"publisher","DOI":"10.1087\/20150211","article-title":"Beyond authorship: Attribution, contribution,\ncollaboration, and credit","volume":"28","author":"Brand","year":"2015","unstructured":"Brand, A., Allen, L., Altman, M.,\nHlava, M., & Scott, J. (2015). Beyond authorship: Attribution,\ncontribution, collaboration, and credit. Learned Publishing, 28(2),\n151\u2013155. https:\/\/doi.org\/10.1087\/20150211","journal-title":"Learned Publishing"}],"container-title":["Journal of Open Source Software"],"original-title":[],"link":[{"URL":"https:\/\/joss.theoj.org\/papers\/10.21105\/joss.05023.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,21]],"date-time":"2023-03-21T11:34:44Z","timestamp":1679398484000},"score":1,"resource":{"primary":{"URL":"https:\/\/joss.theoj.org\/papers\/10.21105\/joss.05023"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,21]]},"references-count":16,"journal-issue":{"issue":"83","published-online":{"date-parts":[[2023,3]]}},"alternative-id":["10.21105\/joss.05023"],"URL":"https:\/\/doi.org\/10.21105\/joss.05023","relation":{"has-review":[{"id-type":"uri","id":"https:\/\/github.com\/openjournals\/joss-reviews\/issues\/5023","asserted-by":"subject"}],"references":[{"id-type":"doi","id":"10.5281\/zenodo.7719505","asserted-by":"subject"}]},"ISSN":["2475-9066"],"issn-type":[{"value":"2475-9066","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,3,21]]}}}