{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,4]],"date-time":"2024-09-04T18:14:02Z","timestamp":1725473642707},"reference-count":9,"publisher":"The Open Journal","issue":"82","license":[{"start":{"date-parts":[[2023,2,13]],"date-time":"2023-02-13T00:00:00Z","timestamp":1676246400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"},{"start":{"date-parts":[[2023,2,13]],"date-time":"2023-02-13T00:00:00Z","timestamp":1676246400000},"content-version":"am","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"},{"start":{"date-parts":[[2023,2,13]],"date-time":"2023-02-13T00:00:00Z","timestamp":1676246400000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["JOSS"],"published-print":{"date-parts":[[2023,2,13]]},"DOI":"10.21105\/joss.04953","type":"journal-article","created":{"date-parts":[[2023,2,13]],"date-time":"2023-02-13T13:47:32Z","timestamp":1676296052000},"page":"4953","source":"Crossref","is-referenced-by-count":3,"title":["tpcp: Tiny Pipelines for Complex Problems - A set of\nframework independent helpers for algorithms development and\nevaluation"],"prefix":"10.21105","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5686-281X","authenticated-orcid":false,"given":"Arne","family":"K\u00fcderle","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0272-5403","authenticated-orcid":false,"given":"Robert","family":"Richer","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0455-0168","authenticated-orcid":false,"given":"Raul C.","family":"S\u00eempetru","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0417-0336","authenticated-orcid":false,"given":"Bjoern M.","family":"Eskofier","sequence":"additional","affiliation":[]}],"member":"8722","reference":[{"key":"Akiba2019","article-title":"Optuna: A Next-generation Hyperparameter\nOptimization Framework","author":"Akiba","year":"2019","unstructured":"Akiba, T., Sano, S., Yanase, T.,\nOhta, T., & Koyama, M. (2019). Optuna: A Next-generation\nHyperparameter Optimization Framework (No. arXiv:1907.10902). arXiv.\nhttp:\/\/arxiv.org\/abs\/1907.10902"},{"key":"Barth2013","isbn-type":"print","doi-asserted-by":"publisher","DOI":"10.1109\/EMBC.2013.6611104","article-title":"Subsequence dynamic time warping as a method\nfor robust step segmentation using gyroscope signals of daily life\nactivities","author":"Barth","year":"2013","unstructured":"Barth, J., Oberndorfer, C., Kugler,\nP., Schuldhaus, D., Winkler, J., Klucken, J., & Eskofier, B. (2013).\nSubsequence dynamic time warping as a method for robust step\nsegmentation using gyroscope signals of daily life activities.\nProceedings of the Annual International Conference of the IEEE\nEngineering in Medicine and Biology Society, EMBS, 6744\u20136747.\nhttps:\/\/doi.org\/10.1109\/EMBC.2013.6611104","ISBN":"http:\/\/id.crossref.org\/isbn\/9781457702167","journal-title":"Proceedings of the Annual International\nConference of the IEEE Engineering in Medicine and Biology Society,\nEMBS"},{"issue":"1","key":"Palotti2019","doi-asserted-by":"publisher","DOI":"10.1038\/s41746-019-0126-9","article-title":"Benchmark on a large cohort for sleep-wake\nclassification with machine learning techniques","volume":"2","author":"Palotti","year":"2019","unstructured":"Palotti, J., Mall, R., Aupetit, M.,\nRueschman, M., Singh, M., Sathyanarayana, A., Taheri, S., &\nFernandez-Luque, L. (2019). Benchmark on a large cohort for sleep-wake\nclassification with machine learning techniques. Npj Digital Medicine,\n2(1), 50.\nhttps:\/\/doi.org\/10.1038\/s41746-019-0126-9","journal-title":"npj Digital Medicine","ISSN":"http:\/\/id.crossref.org\/issn\/2398-6352","issn-type":"print"},{"key":"Paske2019","article-title":"PyTorch: An imperative style,\nhigh-performance deep learning library","volume":"32","author":"Paszke","year":"2019","unstructured":"Paszke, A., Gross, S., Massa, F.,\nLerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein,\nN., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,\nM., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., \u2026 Chintala, S.\n(2019). PyTorch: An imperative style, high-performance deep learning\nlibrary. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlch\u00e9-Buc, E.\nFox, & R. Garnett (Eds.), Advances in neural information processing\nsystems (Vol. 32). Curran Associates, Inc.","journal-title":"Advances in neural information processing\nsystems"},{"key":"Pedregosa2018","doi-asserted-by":"publisher","DOI":"10.48550\/arXiv.1201.0490","article-title":"Scikit-learn: Machine Learning in\nPython","author":"Pedregosa","year":"2018","unstructured":"Pedregosa, F., Varoquaux, G.,\nGramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., M\u00fcller,\nA., Nothman, J., Louppe, G., Prettenhofer, P., Weiss, R., Dubourg, V.,\nVanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M.,\n& Duchesnay, \u00c9. (2018). Scikit-learn: Machine Learning in Python\n(No. arXiv:1201.0490). arXiv.\nhttps:\/\/doi.org\/10.48550\/arXiv.1201.0490"},{"issue":"1","key":"Roth2021a","doi-asserted-by":"publisher","DOI":"10.1186\/s12984-021-00883-7","article-title":"Hidden Markov Model based stride segmentation\non unsupervised free-living gait data in Parkinson\u2019s disease\npatients","volume":"18","author":"Roth","year":"2021","unstructured":"Roth, N., K\u00fcderle, A., Ullrich, M.,\nGladow, T., Marxreiter, F., Klucken, J., Eskofier, B. M., & Kluge,\nF. (2021). Hidden Markov Model based stride segmentation on unsupervised\nfree-living gait data in Parkinson\u2019s disease patients. Journal of\nNeuroEngineering and Rehabilitation, 18(1), 93.\nhttps:\/\/doi.org\/10.1186\/s12984-021-00883-7","journal-title":"Journal of NeuroEngineering and\nRehabilitation","ISSN":"http:\/\/id.crossref.org\/issn\/1743-0003","issn-type":"print"},{"issue":"1","key":"Schreiber2017","article-title":"Pomegranate: Fast and flexible probabilistic\nmodeling in python","volume":"18","author":"Schreiber","year":"2017","unstructured":"Schreiber, J. (2017). Pomegranate:\nFast and flexible probabilistic modeling in python. Journal of Machine\nLearning Research, 18(1), 5992\u20135997.","journal-title":"Journal of Machine Learning\nResearch","ISSN":"http:\/\/id.crossref.org\/issn\/1532-4435","issn-type":"print"},{"key":"tensorflow2015-whitepaper","article-title":"TensorFlow: Large-scale machine learning on\nheterogeneous systems","author":"Abadi","year":"2015","unstructured":"Abadi, M., Agarwal, A., Barham, P.,\nBrevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J.,\nDevin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,\nM., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., \u2026 Zheng, X. (2015).\nTensorFlow: Large-scale machine learning on heterogeneous systems.\nhttps:\/\/www.tensorflow.org\/"},{"issue":"2","key":"Zhai2020a","doi-asserted-by":"publisher","DOI":"10.1145\/3397325","article-title":"Making Sense of Sleep: Multimodal Sleep Stage\nClassification in a Large, Diverse Population Using Movement and Cardiac\nSensing","volume":"4","author":"Zhai","year":"2020","unstructured":"Zhai, B., Perez-Pozuelo, I., Clifton,\nE. A. D., Palotti, J., & Guan, Y. (2020). Making Sense of Sleep:\nMultimodal Sleep Stage Classification in a Large, Diverse Population\nUsing Movement and Cardiac Sensing. Proceedings of the ACM on\nInteractive, Mobile, Wearable and Ubiquitous Technologies, 4(2), 1\u201333.\nhttps:\/\/doi.org\/10.1145\/3397325","journal-title":"Proceedings of the ACM on Interactive,\nMobile, Wearable and Ubiquitous Technologies","ISSN":"http:\/\/id.crossref.org\/issn\/2474-9567","issn-type":"print"}],"container-title":["Journal of Open Source Software"],"original-title":[],"link":[{"URL":"https:\/\/joss.theoj.org\/papers\/10.21105\/joss.04953.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,2,13]],"date-time":"2023-02-13T13:47:37Z","timestamp":1676296057000},"score":1,"resource":{"primary":{"URL":"https:\/\/joss.theoj.org\/papers\/10.21105\/joss.04953"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2,13]]},"references-count":9,"journal-issue":{"issue":"82","published-online":{"date-parts":[[2023,2]]}},"alternative-id":["10.21105\/joss.04953"],"URL":"https:\/\/doi.org\/10.21105\/joss.04953","relation":{"has-review":[{"id-type":"uri","id":"https:\/\/github.com\/openjournals\/joss-reviews\/issues\/4953","asserted-by":"subject"}],"references":[{"id-type":"doi","id":"10.17605\/OSF.IO\/GKY2U","asserted-by":"subject"}]},"ISSN":["2475-9066"],"issn-type":[{"value":"2475-9066","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,2,13]]}}}