{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T01:12:59Z","timestamp":1722993179903},"reference-count":24,"publisher":"Fuji Technology Press Ltd.","issue":"3","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["JRM","J. Robot. Mechatron."],"published-print":{"date-parts":[[2021,6,20]]},"abstract":"This paper describes FST-Convoy, a leader tracking control system for vehicles using the shape sensor flexible sensor tube (FST). \tAmong many methods of autonomous driving, follow-driving is one of them. \tSome of these have been put into practical use in a limited environment. \tUnfortunately, there are situations in which such sensors do not work well. \tOne of these is underground. \tIn the underground, GNSS signals do not reach vehicles, so they cannot obtain their positions. \tTherefore, we propose a new way to achieve follow-driving in such environments. \tWe used the shape sensor, FST. \tThe FST is a shape sensor with a serial link structure and many joints. \tIt can measure its shape by solving its kinematics and determine the relative position of the start link to the end link. \tTherefore, we can measure the relative positions of vehicles that connected a leader and a follower using FST. \tWe call this system FST-Convoy. \tWe developed and verified the system using a platooning-driving experiment.<\/jats:p>","DOI":"10.20965\/jrm.2021.p0610","type":"journal-article","created":{"date-parts":[[2021,6,19]],"date-time":"2021-06-19T15:02:07Z","timestamp":1624114927000},"page":"610-617","source":"Crossref","is-referenced-by-count":0,"title":["FST-Convoy: A Leader Tracking Control of Vehicles Connected by Shape Sensor FST"],"prefix":"10.20965","volume":"33","author":[{"given":"Daisuke","family":"Ura","sequence":"first","affiliation":[]},{"name":"Osaka University Central Terrace 5F, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan","sequence":"first","affiliation":[]},{"given":"Kotaro","family":"Masumoto","sequence":"additional","affiliation":[]},{"given":"Koichi","family":"Osuka","sequence":"additional","affiliation":[]}],"member":"8550","published-online":{"date-parts":[[2021,6,20]]},"reference":[{"key":"key-10.20965\/jrm.2021.p0610-1","doi-asserted-by":"crossref","unstructured":"Z. Horii, \u201cDevelopment of offroad unmanned dump truck navigation system,\u201d Shigen-to-Sozai, Vol.108, No.8, pp. 575-578, 1992.","DOI":"10.2473\/shigentosozai.108.575"},{"key":"key-10.20965\/jrm.2021.p0610-2","doi-asserted-by":"crossref","unstructured":"S. Scheding, G. Dissanayake, E. M. Nebot, and H. Durrant-Whyte, \u201cAn experiment in autonomous navigation of an underground mining vehicle,\u201d IEEE Trans. on Robotics and Automation, Vol.15, No.1, pp. 85-95, 1999.","DOI":"10.1109\/70.744605"},{"key":"key-10.20965\/jrm.2021.p0610-3","doi-asserted-by":"crossref","unstructured":"J. Li, H. Bao, F. Pan, F. Zhang, and D. Wang, \u201cReal-time self-driving car navigation and obstacle avoidance using mobile 3D laser scanner and GNSS,\u201d Multimed. Tools Appl., Vol.76, pp. 23017-23039, 2017.","DOI":"10.1007\/s11042-016-4211-7"},{"key":"key-10.20965\/jrm.2021.p0610-4","doi-asserted-by":"crossref","unstructured":"H. Cho, Y. Seo, B. V. K. V. Kumar, and R. R. Rajkumar, \u201cA multi-sensor fusion system for moving object detection and tracking in urban driving environments,\u201d 2014 IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 1836-1843, 2014.","DOI":"10.1109\/ICRA.2014.6907100"},{"key":"key-10.20965\/jrm.2021.p0610-5","doi-asserted-by":"crossref","unstructured":"U. Lee, J. Jung, S. Jung, and D. H. Shim, \u201cDevelopment of a self-driving car that can handle the adverse weather,\u201d Int. J. of Automotive Technology, Vol.19, pp. 191-197, 2018.","DOI":"10.1007\/s12239-018-0018-z"},{"key":"key-10.20965\/jrm.2021.p0610-6","doi-asserted-by":"crossref","unstructured":"C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, \u201cVisual teach and repeat, repeat, repeat: Iterative learning control to improve mobile robot path tracking in challenging outdoor environments,\u201d 2013 IEEE\/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 176-181, 2013.","DOI":"10.1109\/IROS.2013.6696350"},{"key":"key-10.20965\/jrm.2021.p0610-7","doi-asserted-by":"crossref","unstructured":"T. Fukao and K. Kurashiki, \u201cImage-based robust arbitrary path following of nonholonomic mobile robots,\u201d Trans. of the Society of Instrument and Control Engineers, Vol.47, No.5, pp. 238-246, 2011.","DOI":"10.9746\/sicetr.47.238"},{"key":"key-10.20965\/jrm.2021.p0610-8","doi-asserted-by":"crossref","unstructured":"E. Royer, M. Lhuiller, M. Dhome, and J. Lavest, \u201cMonocular vision for mobile robot localization and autonomous navigation,\u201d Int. J. of Computer Vision, Vol.74, pp. 237-260, 2007.","DOI":"10.1007\/s11263-006-0023-y"},{"key":"key-10.20965\/jrm.2021.p0610-9","doi-asserted-by":"crossref","unstructured":"G. H. Lee, F. Faundorfer, and M. Pollefeys, \u201cMotion Estimation for Self-Driving Cars with a Generalized Camera,\u201d The IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pp. 2746-2753, 2013.","DOI":"10.1109\/CVPR.2013.354"},{"key":"key-10.20965\/jrm.2021.p0610-10","doi-asserted-by":"crossref","unstructured":"S. Hong, M. Li, and P. van Beek, \u201cReal-time mobile robot navigation based on stereo vision and low-cost GPS,\u201d J. of Electronic Imaging, pp. 10-15, 2017.","DOI":"10.2352\/ISSN.2470-1173.2017.9.IRIACV-259"},{"key":"key-10.20965\/jrm.2021.p0610-11","unstructured":"Z. Chen and S. T. Birchfield, \u201cQualitative vision-based mobile robot navigation,\u201d Proc. 2006 IEEE Int. Conf. on Robotics and Automation, pp. 2686-2692, 2006."},{"key":"key-10.20965\/jrm.2021.p0610-12","doi-asserted-by":"crossref","unstructured":"K. Miyashita, S. Kawaji, and T. Ishii, \u201cDevelopment and operation of the autonomous mining truck system,\u201d J. of MMIJ, Vol.125, No.10, pp. 509-513, 2009.","DOI":"10.2473\/journalofmmij.125.509"},{"key":"key-10.20965\/jrm.2021.p0610-13","doi-asserted-by":"crossref","unstructured":"S. Dominguez, B. Khomutenko, G. Garcia, and P. Martinet, \u201cAn optimization technique for positioning multiple maps for self-driving car\u2019s autonomous navigation,\u201d 2015 IEEE 18th Int. Conf. on Intelligent Transportation Systems, pp. 2694-2699, 2015.","DOI":"10.1109\/ITSC.2015.433"},{"key":"key-10.20965\/jrm.2021.p0610-14","doi-asserted-by":"crossref","unstructured":"B. van Arem, C. J. G. van Driel, and R. Visser, \u201cThe impact of cooperative adaptive cruise control on traffic-flow characteristics,\u201d IEEE Trans. on Intelligent Transportation Systems, Vol.7, No.4, pp. 429-436, 2006.","DOI":"10.1109\/TITS.2006.884615"},{"key":"key-10.20965\/jrm.2021.p0610-15","doi-asserted-by":"crossref","unstructured":"V. Milan\u00e9s, S. E. Shladover, J. Spring, C. Nowakowski, H. Kawazoe, and M. Nakamura, \u201cCooperative adaptive cruise control in real traffic situations,\u201d IEEE Trans. on Intelligent Transportation Systems, Vol.15, No.1, pp. 296-305, 2014.","DOI":"10.1109\/TITS.2013.2278494"},{"key":"key-10.20965\/jrm.2021.p0610-16","doi-asserted-by":"crossref","unstructured":"R. Parker and S. Valaee, \u201cCooperative vehicle position estimation,\u201d 2007 IEEE Int. Conf. on Communications, pp. 5837-5842, 2007.","DOI":"10.1109\/ICC.2007.967"},{"key":"key-10.20965\/jrm.2021.p0610-17","doi-asserted-by":"crossref","unstructured":"G. Lu and M. Tomizuka, \u201cLidar sensing for vehicle lateral guidance: Algorithm and experimental study,\u201d IEEE\/ASME Trans. on Mechatronics, Vol.11, No.6, pp. 653-660, 2006.","DOI":"10.1109\/TMECH.2006.886192"},{"key":"key-10.20965\/jrm.2021.p0610-18","doi-asserted-by":"crossref","unstructured":"S. Tsugawa, \u201cAn overview on an automated truck platoon within the energy its project,\u201d IFAC Proc., Vol.46, pp. 41-46, 2013.","DOI":"10.3182\/20130904-4-JP-2042.00110"},{"key":"key-10.20965\/jrm.2021.p0610-19","unstructured":"G. Lu and M. Tomizuka, \u201cVehicle lateral control with combined use of a laser scanning radar sensor and rear magnetometers,\u201d Proc. of the 2002 American Control Conf., pp. 3702-3707, 2002."},{"key":"key-10.20965\/jrm.2021.p0610-20","doi-asserted-by":"crossref","unstructured":"G. Endo, Y. Iemura, E. F. Fukushima, M. Iribe, and M. Ohira, \u201cMobile follower robot as an assistive device for home oxygen therapy \u2013 evaluation of tether control algorithms,\u201d ROBOMECH J., Vol.2, 6, 2015.","DOI":"10.1186\/s40648-014-0026-3"},{"key":"key-10.20965\/jrm.2021.p0610-21","unstructured":"K. Osuka, R. Haraguchi, J. Masukawa, T. Wada, Y. Kitada, and K. Kusunoki, \u201cDevelopment of Flexible Sensor Tube: FST,\u201d SICE System Integration Division Annual Conf., pp. 327-328, 2005."},{"key":"key-10.20965\/jrm.2021.p0610-22","unstructured":"K. Maeda and K. Osuka, \u201cError analysis of FST for accuracy improvement,\u201d Proc. of SICE Annual Conf. 2010, pp. 1698-1700, 2010."},{"key":"key-10.20965\/jrm.2021.p0610-23","doi-asserted-by":"crossref","unstructured":"K. Osuka and T. Iwata, \u201cMaster-slave Control of Dual Manipulator with FST,\u201d Proc. of JSME Annual Conf. on Robotics and Mechatronics, 2P1-J06, 2007.","DOI":"10.1299\/jsmermd.2007._2P1-J06_1"},{"key":"key-10.20965\/jrm.2021.p0610-24","unstructured":"K. Osuka, Y. Iwano, and H. Amano, \u201cHuman Following Mobile Robot FRIGO Using Flexible Sensor Tube,\u201d SICE System Integration Division Annual Conf., pp. 278-279, 2007."}],"container-title":["Journal of Robotics and Mechatronics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.fujipress.jp\/main\/wp-content\/themes\/Fujipress\/phyosetsu.php?ppno=ROBOT003300030019","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,6,19]],"date-time":"2021-06-19T15:06:46Z","timestamp":1624115206000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.fujipress.jp\/jrm\/rb\/robot003300030610"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,20]]},"references-count":24,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2021,6,20]]},"published-print":{"date-parts":[[2021,6,20]]}},"URL":"https:\/\/doi.org\/10.20965\/jrm.2021.p0610","relation":{},"ISSN":["1883-8049","0915-3942"],"issn-type":[{"type":"electronic","value":"1883-8049"},{"type":"print","value":"0915-3942"}],"subject":[],"published":{"date-parts":[[2021,6,20]]}}}