{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T01:09:29Z","timestamp":1722992969062},"reference-count":5,"publisher":"Fuji Technology Press Ltd.","issue":"5","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["J. Robot. Mechatron.","JRM"],"published-print":{"date-parts":[[2012,10,20]]},"abstract":"In this paper, we have evaluated the performance and availability enhancement of Quasi-Zenith Satellite System (QZSS) in urban environments. In urban environments, QZSS can be expected to be fairly effective because of the high elevation angle of satellite and enhancement functions. Therefore, we conducted performance and availability enhancement evaluation tests to verify thus. In performance enhancement evaluation test, in order to evaluate the improvement of GPS accuracy by L1 Submeter-class Augmentation with Integrity Function (L1-SAIF) broadcasted by QZSS satellite, we compared the positioning errors of only GPS positioning and L1-SAIF positioning in open sky environment. In availability enhancement evaluation test, we performed the static and kinematic observation test. In static observation test, in order to evaluate the improvement of GPS accuracy by availability enhancement, we observed GPS and QZSS statically in narrow-sky environment. And we compared the positioning errors of only GPS positioning and positioning using availability enhancement. In kinematic observation test, in order to evaluate the availability of QZSS based on the visibility of QZSS satellite in urban environment, we observed QZSS and SBAS from moving vehicle. And we compared the visibility of QZSS and SBAS satellites. From these evaluation tests, it was confirmed that the performance and availability enhancement of QZSS have high availability and effectiveness.<\/jats:p>","DOI":"10.20965\/jrm.2012.p0894","type":"journal-article","created":{"date-parts":[[2016,4,14]],"date-time":"2016-04-14T02:23:03Z","timestamp":1460600583000},"page":"894-901","source":"Crossref","is-referenced-by-count":0,"title":["Evaluation for Vehicle Positioning in Urban Environment Using QZSS Enhancement Function"],"prefix":"10.20965","volume":"24","author":[{"given":"Mitsunori","family":"Kitamura","sequence":"first","affiliation":[]},{"name":"Graduate School of Science and Engineering, Waseda University, 17 Kikui-cho, Shinjuku-ku, Tokyo 162-0044, Japan","sequence":"first","affiliation":[]},{"given":"Taro","family":"Suzuki","sequence":"additional","affiliation":[]},{"given":"Yoshiharu","family":"Amano","sequence":"additional","affiliation":[]},{"given":"Takumi","family":"Hashizume","sequence":"additional","affiliation":[]},{"name":"JSPS Research Fellow, Tokyo University of Marine Science and Technology, 2-1-6 Etchujima, Koto-ku, Tokyo 135-8533, Japan","sequence":"additional","affiliation":[]},{"name":"Advanced Research Institute for Science and Engineering, Waseda University, 17 Kikui-cho, Shinjuku-ku, Tokyo 162-0044, Japan","sequence":"additional","affiliation":[]}],"member":"8550","published-online":{"date-parts":[[2012,10,20]]},"reference":[{"key":"key-10.20965\/jrm.2012.p0894-1","unstructured":"P.Misra and P. Enge, \u201cGLOBAL POSITIONING SYSTEMSignal, Measurements, and Performance Second Edition,\u201d Ganga-Jamuna Press, Asakura Publishing Co., Ltd., pp. 49-53, Sep. 2010."},{"key":"key-10.20965\/jrm.2012.p0894-2","unstructured":"T. Sakai, S. Fukushima, N. Arai, and K. Ito, \u201cImplementation of Prototype Satellite-Based Augmentation System (SBAS),\u201d IGNSS Symposium 2006, pp. 6-9, July 2006."},{"key":"key-10.20965\/jrm.2012.p0894-3","unstructured":"\u201cQuasi-Zenith Satellite System Navigation Service Interface Specification for QZSS IS-QZSS Ver.1.1,\u201d Japan Aerospace Exploration Agency, pp. 27-40, July 2009."},{"key":"key-10.20965\/jrm.2012.p0894-4","unstructured":"T. Sakai, S. Fukushima, and K. Ito, \u201cDevelopment of QZSS L1-SAIF Augmentation Signal,\u201d ICROS-SICE 2009, pp. 4462-4467, August 18-21, 2009."},{"key":"key-10.20965\/jrm.2012.p0894-5","doi-asserted-by":"crossref","unstructured":"J. Meguro et al., \u201cAutonomous Mobile Surveillance System based on RTK-GPS in Urban Canyons,\u201d J. of Robotics and Mechatronics, Vol.2, No.17, pp. 218-225, 2005.","DOI":"10.20965\/jrm.2005.p0218"}],"container-title":["Journal of Robotics and Mechatronics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.fujipress.jp\/main\/wp-content\/themes\/Fujipress\/phyosetsu.php?ppno=ROBOT002400050018","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2017,6,25]],"date-time":"2017-06-25T00:43:48Z","timestamp":1498351428000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.fujipress.jp\/jrm\/rb\/robot002400050894"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2012,10,20]]},"references-count":5,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2012,10,20]]},"published-print":{"date-parts":[[2012,10,20]]}},"URL":"https:\/\/doi.org\/10.20965\/jrm.2012.p0894","relation":{},"ISSN":["1883-8049","0915-3942"],"issn-type":[{"type":"electronic","value":"1883-8049"},{"type":"print","value":"0915-3942"}],"subject":[],"published":{"date-parts":[[2012,10,20]]}}}