{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T01:10:35Z","timestamp":1722993035087},"reference-count":162,"publisher":"Fuji Technology Press Ltd.","issue":"1","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["J. Adv. Comput. Intell. Intell. Inform.","JACIII"],"published-print":{"date-parts":[[2017,1,20]]},"abstract":"Data mining is the analytics and knowledge discovery process of analyzing large volumes of data from various sources and transforming the data into useful information. Various disciplines have contributed to its development and is becoming increasingly important in the scientific and industrial world. This article presents a review of data mining techniques and applications from 1996 to 2016. Techniques are divided into two main categories: predictive methods and descriptive methods. Due to the huge number of publications available on this topic, only a selected number are used in this review to highlight the developments of the past 20 years. Applications are included to provide some insights into how each data mining technique has evolved over the last two decades. Recent research trends focus more on large data sets and big data. Recently there have also been more applications in area of health informatics with the advent of newer algorithms.<\/jats:p>","DOI":"10.20965\/jaciii.2017.p0031","type":"journal-article","created":{"date-parts":[[2017,1,19]],"date-time":"2017-01-19T20:06:05Z","timestamp":1484856365000},"page":"31-48","source":"Crossref","is-referenced-by-count":5,"title":["A Review of Data Mining Techniques and Applications"],"prefix":"10.20965","volume":"21","author":[{"given":"Ratchakoon","family":"Pruengkarn","sequence":"first","affiliation":[]},{"name":"School of Engineering and Information Technology, Murdoch University","sequence":"first","affiliation":[]},{"given":"Kok Wai","family":"Wong","sequence":"additional","affiliation":[]},{"given":"Chun Che","family":"Fung","sequence":"additional","affiliation":[]}],"member":"8550","published-online":{"date-parts":[[2017,1,20]]},"reference":[{"key":"key-10.20965\/jaciii.2017.p0031-1","unstructured":"U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth, \u201cFrom Data Mining to Knowledge Discovery in Database,\u201d AI Magazine, Vol.17, pp. 37-54, 1996."},{"key":"key-10.20965\/jaciii.2017.p0031-2","unstructured":"M. Kantardzic, \u201cData Mining: Concepts, Models, Methods and Algorithms,\u201d John Wiley & Sons, Inc., 2002."},{"key":"key-10.20965\/jaciii.2017.p0031-3","unstructured":"M. H. Dunham, \u201cData mining introductory and advanced topics,\u201d Pearson Education, Inc., 2003."},{"key":"key-10.20965\/jaciii.2017.p0031-4","unstructured":"G. C. Nsofor, \u201cA Comparative Analysis of Predictive Data-Mining Techniques,\u201d Master of Science, The University of Tennessee, Knoxville, 2006."},{"key":"key-10.20965\/jaciii.2017.p0031-5","unstructured":"F. Gorunescu, \u201cData Mining Concepts, Models and Techniques,\u201d Vol.12, Springer-Verlag Berlin Heidelberg, 2011."},{"key":"key-10.20965\/jaciii.2017.p0031-6","doi-asserted-by":"crossref","unstructured":"M. M. Mottalib, M. Rokonuzzaman, and M. T. Habib, \u201cFabric defect classification with geometric features using Bayesian classifier,\u201d Int. Conf. on Advances in Electrical Engineering 2015 (ICAEE), 2015.","DOI":"10.1109\/ICAEE.2015.7506815"},{"key":"key-10.20965\/jaciii.2017.p0031-7","doi-asserted-by":"crossref","unstructured":"H. Yamagishi, H. Kawakami, T. Horiuchi, and a. O. Katai, \u201cReinforcement Leaning of Fuzzy Control Rules with Context-Specitic Segmentation of Actions,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.6, pp. 19-24, 2002.","DOI":"10.20965\/jaciii.2002.p0019"},{"key":"key-10.20965\/jaciii.2017.p0031-8","doi-asserted-by":"crossref","unstructured":"N. Takagi, \u201cAn Application of Binary Decision Trees to Pattern Recognition,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.10, No.5, pp. 682-687, 2006.","DOI":"10.20965\/jaciii.2006.p0682"},{"key":"key-10.20965\/jaciii.2017.p0031-9","doi-asserted-by":"crossref","unstructured":"S. T. Chen, S. L. Dou, and W. J. Chen, \u201cA Data Mining Approach to Rainfall Intensity Classification Using TRMM\/TMI Data,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.12, pp. 516-522, 2008.","DOI":"10.20965\/jaciii.2008.p0516"},{"key":"key-10.20965\/jaciii.2017.p0031-10","doi-asserted-by":"crossref","unstructured":"A. Stassopoulou, M. Petrou, and J. Kittler, \u201cBayesian and neural networks for geographic information processing,\u201d Pattern Recognition Letters, Vol.17, pp. 1325-1330, 1996.","DOI":"10.1016\/S0167-8655(96)00089-X"},{"key":"key-10.20965\/jaciii.2017.p0031-11","doi-asserted-by":"crossref","unstructured":"S. Lavington, N. Dewhurst, and A. F. E. Wilkins, \u201cInterfacing knowledge discovery algorithms to large database management systems,\u201d Information and Software Technology, Vol.41, pp. 605-617, 1999.","DOI":"10.1016\/S0950-5849(99)00024-5"},{"key":"key-10.20965\/jaciii.2017.p0031-12","doi-asserted-by":"crossref","unstructured":"A. Rauber and J. Paralic, \u201cCluster Analysis as a First Step in the Knowledge Discovery Process,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.4, pp. 258-262, 2000.","DOI":"10.20965\/jaciii.2000.p0258"},{"key":"key-10.20965\/jaciii.2017.p0031-13","doi-asserted-by":"crossref","unstructured":"T. Tamaki, \u201cHuman Limb Extraction Based on Motion Estimation Using Optical Flow and Image Registration,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.8, pp. 150-155, 2004.","DOI":"10.20965\/jaciii.2004.p0150"},{"key":"key-10.20965\/jaciii.2017.p0031-14","doi-asserted-by":"crossref","unstructured":"P. Valenti, E. Cazamajou, M. Scarpettini, A. Aizemberg, W. Silva, and S. Kochen, \u201cAutomatic detection of interictal spikes using data mining models,\u201d Neuroscience Methods, Vol.150, pp. 105-110, 2006.","DOI":"10.1016\/j.jneumeth.2005.06.005"},{"key":"key-10.20965\/jaciii.2017.p0031-15","doi-asserted-by":"crossref","unstructured":"J. Kazmierska and J. Malicki, \u201cApplication of the Na\u00efve Bayesian Classifier to optimize treatment decisions,\u201d Radiotherapy and Oncology, Vol.86, pp. 211-216, 2008.","DOI":"10.1016\/j.radonc.2007.10.019"},{"key":"key-10.20965\/jaciii.2017.p0031-16","doi-asserted-by":"crossref","unstructured":"J. Alonso-Montesinos, M. Mart\u00ednez-Durb\u00e1n, J. d. Sagrado, I. M. d. \u00c1guila, and F. J. Batlles, \u201cThe application of Bayesian network classifiers to cloud classification in satellite images,\u201d Renewable Energy, Vol.97, pp. 155-161, 2016.","DOI":"10.1016\/j.renene.2016.05.066"},{"key":"key-10.20965\/jaciii.2017.p0031-17","doi-asserted-by":"crossref","unstructured":"Q. Li, F. Li, and K. Doi, \u201cComputerized Detection of Lung Nodules in Thin-Section CT Images by Use of Selective Enhancement Filters and an Automated Rule-Based Classifier,\u201d Academic Radiology, Vol.15, pp. 165-175, 2008.","DOI":"10.1016\/j.acra.2007.09.018"},{"key":"key-10.20965\/jaciii.2017.p0031-18","doi-asserted-by":"crossref","unstructured":"S. Mabu, M. Obayashi, and T. Kuremoto, \u201cEnsemble learning of rule-based evolutionary algorithm using multi-layer perceptron for supporting decisions in stock trading problems,\u201d Applied Soft Computing, Vol.36, pp. 357-367, 2015.","DOI":"10.1016\/j.asoc.2015.07.020"},{"key":"key-10.20965\/jaciii.2017.p0031-19","doi-asserted-by":"crossref","unstructured":"S. Mabu, W. Li, and K. Hirasawa, \u201cA Class Association Rule Based Classifier Using Probability Density Functions for Intrusion Detection Systems,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.19, pp. 555-566, 2015.","DOI":"10.20965\/jaciii.2015.p0555"},{"key":"key-10.20965\/jaciii.2017.p0031-20","doi-asserted-by":"crossref","unstructured":"D. M. Farid, M. A. Al-Mamun, B. Manderick, and A. Nowe, \u201cAn adaptive rule-based classifier for mining big biological data,\u201d Expert Systems with Applications, Vol.64, pp. 305-316, 2016.","DOI":"10.1016\/j.eswa.2016.08.008"},{"key":"key-10.20965\/jaciii.2017.p0031-21","doi-asserted-by":"crossref","unstructured":"V. S. R. P. V. Kamadi, A. R. Allam, S. M. Thummala, and V. N. R. P., \u201cA computational intelligence technique for the effective diagnosis of diabetic patients using principal component analysis (PCA) and modified fuzzy SLIQ decision tree approach,\u201d Applied Soft Computing, Vol.49, pp. 137-145, 2016.","DOI":"10.1016\/j.asoc.2016.05.010"},{"key":"key-10.20965\/jaciii.2017.p0031-22","doi-asserted-by":"crossref","unstructured":"L. O. Hall and P. Lande, \u201cGeneration of Fuzzy Rules from Decision Trees,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.2, pp. 128-133, 1998.","DOI":"10.20965\/jaciii.1998.p0128"},{"key":"key-10.20965\/jaciii.2017.p0031-23","doi-asserted-by":"crossref","unstructured":"O. Matsumoto, K. J. Mackin, and E. Tazaki, \u201cEmergence of Learning Rule in Neural Networks Using Genetic Programming Combined with Decision Trees,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.3, pp. 223-233, 1999.","DOI":"10.20965\/jaciii.1999.p0223"},{"key":"key-10.20965\/jaciii.2017.p0031-24","doi-asserted-by":"crossref","unstructured":"M. T. a. N. Muranaka, \u201cProduct-Impression Analysis Using Fuzzy C4.5 Decision Tree,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.13, pp. 731-737, 2009.","DOI":"10.20965\/jaciii.2009.p0731"},{"key":"key-10.20965\/jaciii.2017.p0031-25","doi-asserted-by":"crossref","unstructured":"H. E. Osman, \u201cAveraging Forest for Online Vision,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.13, pp. 400-406, 2009.","DOI":"10.20965\/jaciii.2009.p0400"},{"key":"key-10.20965\/jaciii.2017.p0031-26","doi-asserted-by":"crossref","unstructured":"K. M. Lee, K. S. Hwang, K. M. Lee, S. K. Han, W. H. Jung, and S. Lee, \u201cSupervised Learning-Based Feature Selection for Mondrian Paintings Style Authentication,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.16, pp. 894-899, 2012.","DOI":"10.20965\/jaciii.2012.p0894"},{"key":"key-10.20965\/jaciii.2017.p0031-27","doi-asserted-by":"crossref","unstructured":"J. Kozak and U. Boryczka, \u201cCollective data mining in the ant colony decision tree approach,\u201d Information Sciences, Vol.372, pp. 126-147, 2016.","DOI":"10.1016\/j.ins.2016.08.051"},{"key":"key-10.20965\/jaciii.2017.p0031-28","doi-asserted-by":"crossref","unstructured":"K. Kim, \u201cA hybrid classification algorithm by subspace partitioning through semi-supervised decision tree,\u201d Pattern Recognition, Vol.60, pp. 157-163, 2016.","DOI":"10.1016\/j.patcog.2016.04.016"},{"key":"key-10.20965\/jaciii.2017.p0031-29","doi-asserted-by":"crossref","unstructured":"M. Puri, A. Solanki, T. Padawer, S. M. Tipparaju, W. A. Moreno, and Y. Pathak, \u201cChapter 1 - Introduction to Artificial Neural Network (ANN) as a Predictive Tool for Drug Design, Discovery, Delivery, and Disposition: Basic Concepts and Modeling,\u201d Artificial Neural Network for Drug Design, Delivery and Disposition, pp. 3-13, 2016.","DOI":"10.1016\/B978-0-12-801559-9.00001-6"},{"key":"key-10.20965\/jaciii.2017.p0031-30","doi-asserted-by":"crossref","unstructured":"P. Baranyi, L. T. Koczy, and T. D. Gedeon, \u201cImproved Fuzzy and Neural Network Algorithms for Word Frequency Prediction in Document Filtering,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.2, pp. 88-95, 1998.","DOI":"10.20965\/jaciii.1998.p0088"},{"key":"key-10.20965\/jaciii.2017.p0031-31","doi-asserted-by":"crossref","unstructured":"R. Dhaouadi and K. Nouri, \u201cNeural Network-Based Speed Control of A Two-Mass-Model System,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.3, pp. 427-430, 1999.","DOI":"10.20965\/jaciii.1999.p0427"},{"key":"key-10.20965\/jaciii.2017.p0031-32","doi-asserted-by":"crossref","unstructured":"J. Lu and H. Ohta, \u201cA Powerful Neural Network Method with Digital-contract Hints for Pricing Complex Options,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.7, pp. 139-146, 2003.","DOI":"10.20965\/jaciii.2003.p0139"},{"key":"key-10.20965\/jaciii.2017.p0031-33","doi-asserted-by":"crossref","unstructured":"N. Watanabe and S. Ishizaki, \u201cNeural Network Model for Word Sense Disambiguation Using Up\/Down State and Morphoelectrotonic Transform,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.11, pp. 780-786, 2007.","DOI":"10.20965\/jaciii.2007.p0780"},{"key":"key-10.20965\/jaciii.2017.p0031-34","doi-asserted-by":"crossref","unstructured":"T. Kondo, J. Ueno, and S. Takao, \u201cMedical Image Diagnosis of Liver Cancer Using a Neural Network and Artificial Intelligence,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.15, pp. 714-722, 2011.","DOI":"10.20965\/jaciii.2011.p0714"},{"key":"key-10.20965\/jaciii.2017.p0031-35","doi-asserted-by":"crossref","unstructured":"K. G. Abistado, C. N. Arellano, and E. A. Maravillas, \u201cWeather Forecasting Using Artificial Neural Network and Bayesian Network,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.18, pp. 812-817, 2014.","DOI":"10.20965\/jaciii.2014.p0812"},{"key":"key-10.20965\/jaciii.2017.p0031-36","unstructured":"S. R. Gunn, \u201cSupport Vector Machines for Classification and Regression,\u201d University of Southampton, 1998."},{"key":"key-10.20965\/jaciii.2017.p0031-37","doi-asserted-by":"crossref","unstructured":"M. Kantardzic, B. Djulbegovic, and H. Hamdan, \u201cA data-mining approach to improving Polycythemia Vera diagnosis,\u201d Computers & Industrial Engineering, Vol.43, pp. 765-773, 2002.","DOI":"10.1016\/S0360-8352(02)00138-9"},{"key":"key-10.20965\/jaciii.2017.p0031-38","doi-asserted-by":"crossref","unstructured":"S. F. Crone, S. Lessmann, and R. Stahlbock, \u201cThe impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing,\u201d European J. of Operational Research, Vol.173, pp. 781-800, 2006.","DOI":"10.1016\/j.ejor.2005.07.023"},{"key":"key-10.20965\/jaciii.2017.p0031-39","doi-asserted-by":"crossref","unstructured":"C. C. Lee, S. H. Chen, and Y. C. Chiang, \u201cClassification of Liver Disease from CT Images Using a Support Vector Machine,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.11, pp. 396-402, 2007.","DOI":"10.20965\/jaciii.2007.p0396"},{"key":"key-10.20965\/jaciii.2017.p0031-40","doi-asserted-by":"crossref","unstructured":"B. Li, J. Hu, and K. Hirasawa, \u201cSupport Vector Machine Classifier with WHM Offset for Unbalanced Data,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.12, pp. 94-101, 2008.","DOI":"10.20965\/jaciii.2008.p0094"},{"key":"key-10.20965\/jaciii.2017.p0031-41","doi-asserted-by":"crossref","unstructured":"B. L. Qiangwei Wang, and Jinglu Hu, \u201cHuman Resource Selection Based on Performance ClassificationUsingWeighted Support Vector Machine,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.13, pp. 407-415, 2009.","DOI":"10.20965\/jaciii.2009.p0407"},{"key":"key-10.20965\/jaciii.2017.p0031-42","doi-asserted-by":"crossref","unstructured":"K. Shimada, R. Muto, and T. Endo, \u201cA Combined Method Based on SVM and Online Learning with HOG for Hand Shape Recognition,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.16, pp. 687-695, 2012.","DOI":"10.20965\/jaciii.2012.p0687"},{"key":"key-10.20965\/jaciii.2017.p0031-43","doi-asserted-by":"crossref","unstructured":"\u201cStock Market Trend Prediction Based on Text Mining of Corporate Web and Time Series Data,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.18, pp. 22-31, 2014.","DOI":"10.20965\/jaciii.2014.p0022"},{"key":"key-10.20965\/jaciii.2017.p0031-44","unstructured":"J. Han, M. Kamber, and J. Pei, \u201cData Mining: Concepts and Techniques,\u201d ELSEVIER SCIENCE & TECHNOLOGY, 2011."},{"key":"key-10.20965\/jaciii.2017.p0031-45","doi-asserted-by":"crossref","unstructured":"H. He, S. Hawkins, W. Graco, and X. Yao, \u201cApplication of Genetic Algorithm and K-Nearest Neighbour Method in Real World Medical Fraud Detection Problem,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.4, pp. 130-137, 2000.","DOI":"10.20965\/jaciii.2000.p0130"},{"key":"key-10.20965\/jaciii.2017.p0031-46","doi-asserted-by":"crossref","unstructured":"M. Y. Su, \u201cReal-time anomaly detection systems for Denial-of-Service attacks by weighted k-nearest-neighbor classifiers,\u201d Expert Systems with Applications, Vol.38, pp. 3492-3498, 2011.","DOI":"10.1016\/j.eswa.2010.08.137"},{"key":"key-10.20965\/jaciii.2017.p0031-47","doi-asserted-by":"crossref","unstructured":"J. Maillo, S. Ram\u00edrez, I. Triguero, and F. Herrera, \u201ckNN-IS: An Iterative Spark-based design of the k-Nearest Neighbors classifier for big data,\u201d Knowledge-Based Systems, pp. 1-13, 2016.","DOI":"10.1016\/j.knosys.2016.06.012"},{"key":"key-10.20965\/jaciii.2017.p0031-48","doi-asserted-by":"crossref","unstructured":"D. Wang, \u201cK-nearest neighbors based methods for identification of different gear crack levels under different motor speeds and loads: Revisited,\u201d Mechanical Systems and Signal Processing, Vol.70-71, pp. 201-208, 2016.","DOI":"10.1016\/j.ymssp.2015.10.007"},{"key":"key-10.20965\/jaciii.2017.p0031-49","doi-asserted-by":"crossref","unstructured":"K. Hirota, H. Yoshino, M. Q. Xu, Y. Zhu, X. Y. Li, and D. Horie, \u201cAn Application of Fuzzy Theory to the Case-Based Reasoning of the CISG,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.1, pp. 86-93, 1997.","DOI":"10.20965\/jaciii.1997.p0086"},{"key":"key-10.20965\/jaciii.2017.p0031-50","doi-asserted-by":"crossref","unstructured":"N. H. Phuong, N. B. Tu, and A. Ohsato, \u201cDeveloping Case-based Reasoning System for Medical Consultation Using the Importance of Features,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.6, pp. 41-50, 2002.","DOI":"10.20965\/jaciii.2002.p0041"},{"key":"key-10.20965\/jaciii.2017.p0031-51","doi-asserted-by":"crossref","unstructured":"T. Ahola and K. Leivisk\u00e4, \u201cCase-Based Reasoning in Web Break Sensitivity Evaluation in a Paper Machine,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.9, pp. 556-561, 2005.","DOI":"10.20965\/jaciii.2005.p0556"},{"key":"key-10.20965\/jaciii.2017.p0031-52","doi-asserted-by":"crossref","unstructured":"C. H. L. Lee, A. Liu, and H. H. Huang, \u201cUsing Planning and Case-Based Reasoning for Service Composition,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.14, pp. 540-548, 2010.","DOI":"10.20965\/jaciii.2010.p0540"},{"key":"key-10.20965\/jaciii.2017.p0031-53","doi-asserted-by":"crossref","unstructured":"Y. Shen, J. Colloc, A. Jacquet-Andrieu, and K. Lei, \u201cEmerging medical informatics with case-based reasoning for aiding clinical decision in multi-agent system,\u201d J. of Biomedical Informatics, Vol.56, pp. 307-317, 2015.","DOI":"10.1016\/j.jbi.2015.06.012"},{"key":"key-10.20965\/jaciii.2017.p0031-54","doi-asserted-by":"crossref","unstructured":"F. Sartori, A. Mazzucchelli, and A. D. Gregorio, \u201cBankruptcy forecasting using case-based reasoning: The CRePERIE approach,\u201d Expert Systems with Applications,\u201d Vol.64, pp. 400-411, 2016.","DOI":"10.1016\/j.eswa.2016.07.033"},{"key":"key-10.20965\/jaciii.2017.p0031-55","doi-asserted-by":"crossref","unstructured":"T. Miyajima and T. Koitabashi, \u201cPlacement Time Optimization of Chip Mounter by Genetic Algorithms \u2013 Search for Optimal Tape Feeder Arrangement \u2013,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.2, pp. 160-163, 1998.","DOI":"10.20965\/jaciii.1998.p0160"},{"key":"key-10.20965\/jaciii.2017.p0031-56","doi-asserted-by":"crossref","unstructured":"M. Watanabe, H. Nobuhara, K. Kawamoto, F. Dong, and K. Hirota, \u201cChain Restaurant Work Scheduling Based on Genetic Algorithm with Fuzzy Logic,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.10, pp. 50-59, 2006.","DOI":"10.20965\/jaciii.2006.p0050"},{"key":"key-10.20965\/jaciii.2017.p0031-57","doi-asserted-by":"crossref","unstructured":"C. W. Han and H. Nobuhara, \u201cAdvanced Genetic Algorithms Based on Adaptive Partitioning Method,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.11, pp. 677-680, 2007.","DOI":"10.20965\/jaciii.2007.p0677"},{"key":"key-10.20965\/jaciii.2017.p0031-58","doi-asserted-by":"crossref","unstructured":"T. Inaba, L. He, K. Suzuki, K. Murakami, and Y. Chao, \u201cA Genetic-Algorithm-Based Temporal Subtraction for Chest Radiographs,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.13, pp. 289-296, 2009.","DOI":"10.20965\/jaciii.2009.p0289"},{"key":"key-10.20965\/jaciii.2017.p0031-59","doi-asserted-by":"crossref","unstructured":"E. P. Ijjina and K. M. Chalavadi, \u201cHuman action recognition using genetic algorithms and convolutional neural networks,\u201d Pattern Recognition, Vol.59, pp. 199-212, 2016.","DOI":"10.1016\/j.patcog.2016.01.012"},{"key":"key-10.20965\/jaciii.2017.p0031-60","doi-asserted-by":"crossref","unstructured":"P. Mahajan, R. Kandwal, and R. Vijay, \u201cRough Set Approach in Machine Learning: A Review.,\u201d J. of Computer Applications, Vol.56, pp. 1-13, 2012.","DOI":"10.5120\/8924-2996"},{"key":"key-10.20965\/jaciii.2017.p0031-61","doi-asserted-by":"crossref","unstructured":"P. Pattaraintakorn and N. Cercone, \u201cIntegrating rough set theory and medical applications,\u201d Applied Mathematics Letters, Vol.21, pp. 400-403, 2008.","DOI":"10.1016\/j.aml.2007.05.010"},{"key":"key-10.20965\/jaciii.2017.p0031-62","doi-asserted-by":"crossref","unstructured":"I. Jagielska, \u201cUsing Rough Sets for Practical Feature Selection in a Rough Sets\/Neural Network Framework for Knowledge Discovery,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.4, pp. 31-38, 2000.","DOI":"10.20965\/jaciii.2000.p0031"},{"key":"key-10.20965\/jaciii.2017.p0031-63","doi-asserted-by":"crossref","unstructured":"W. Jin-Mao, W. Shu-Qin, and W. Ming-Yang, \u201cNovel Approach to Decision-Tree Construction,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.8, p. JACIIIVol.8 No.3pp. , 2004.","DOI":"10.20965\/jaciii.2004.p0332"},{"key":"key-10.20965\/jaciii.2017.p0031-64","doi-asserted-by":"crossref","unstructured":"H. Sakai, K. Koba, and M. Nakata, \u201cRough Sets Based Rule Generation from Data with Categorical and Numerical Values,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.12, pp. 426-434, 2008.","DOI":"10.20965\/jaciii.2008.p0426"},{"key":"key-10.20965\/jaciii.2017.p0031-65","doi-asserted-by":"crossref","unstructured":"A. Kothari and A. Keskar, \u201cRough Set Approach for Overall Performance Improvement of an Unsupervised ANN-Based Pattern Classifier,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.13, pp. 434-440, 2009.","DOI":"10.20965\/jaciii.2009.p0434"},{"key":"key-10.20965\/jaciii.2017.p0031-66","doi-asserted-by":"crossref","unstructured":"Y. Matsumoto and J. Watada, \u201cRough Sets Based Prediction Model of Tick-Wise Price Fluctuations,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.15, pp. 449-453, 2011.","DOI":"10.20965\/jaciii.2011.p0449"},{"key":"key-10.20965\/jaciii.2017.p0031-67","doi-asserted-by":"crossref","unstructured":"D. V. Nguyen, K. Yamada, and M. Unehara, \u201cRough Set Approach with Imperfect Data Based on Dempster-Shafer Theory,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.18, pp. 280-288, 2014.","DOI":"10.20965\/jaciii.2014.p0280"},{"key":"key-10.20965\/jaciii.2017.p0031-68","doi-asserted-by":"crossref","unstructured":"S. Park and H. Lee-Kwang, \u201cType-2 Fuzzy Hypergraphs Using Type-2 Fuzzy Sets,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.4, pp. 362-367, 2000.","DOI":"10.20965\/jaciii.2000.p0362"},{"key":"key-10.20965\/jaciii.2017.p0031-69","doi-asserted-by":"crossref","unstructured":"G. H. Tzeng, C. M. Feng, and C. C. Kang, \u201cApplication of Fuzzy Set Theory and DEA Model to Evaluating Production Efficiency for Taipei City Bus Company,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.5, pp. 128-138, 2001.","DOI":"10.20965\/jaciii.2001.p0128"},{"key":"key-10.20965\/jaciii.2017.p0031-70","doi-asserted-by":"crossref","unstructured":"H. Sekiya, T. Kondo, M. Hashimoto, and T. Takagi, \u201cDynamic Sense Representation Using Conceptual Fuzzy Sets,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.10, pp. 859-867, 2006.","DOI":"10.20965\/jaciii.2006.p0859"},{"key":"key-10.20965\/jaciii.2017.p0031-71","doi-asserted-by":"crossref","unstructured":"K. Uehara and K. Hirota, \u201cMulti-Level Control of Fuzzy-Constraint Propagation via Evaluations with Linguistic Truth Values in Generalized-Mean-Based Inference,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.20, pp. 355-377, 2016.","DOI":"10.20965\/jaciii.2016.p0355"},{"key":"key-10.20965\/jaciii.2017.p0031-72","unstructured":"R. A. Yaffee, \u201cRobust Regression Analysis:Some Popular Statistical Package Options,\u201d Statistics, Social Science, and Mapping Group Academic Computing Services Information Technology Services, 2002."},{"key":"key-10.20965\/jaciii.2017.p0031-73","doi-asserted-by":"crossref","unstructured":"T. C. Fu, \u201cA review on time series data mining,\u201d Engineering Applications of Artificial Intelligence, Vol.24, pp. 164-181, 2011.","DOI":"10.1016\/j.engappai.2010.09.007"},{"key":"key-10.20965\/jaciii.2017.p0031-74","doi-asserted-by":"crossref","unstructured":"A. Serletis and D. Krause, \u201cEmpirical evidence on the long-run neutrality hypothesis using low-frequency international data,\u201d Economics Letters, Vol.50, pp. 323-327, 1996.","DOI":"10.1016\/0165-1765(95)00764-4"},{"key":"key-10.20965\/jaciii.2017.p0031-75","doi-asserted-by":"crossref","unstructured":"R. E. Abdel-Aal and A. M. Mangoud, \u201cModeling and forecasting monthly patient volume at a primary health care clinic using univariate time-series analysis,\u201d Computer Methods and Programs in Biomedicine, Vol.56, pp. 235-247, 1998.","DOI":"10.1016\/S0169-2607(98)00032-7"},{"key":"key-10.20965\/jaciii.2017.p0031-76","doi-asserted-by":"crossref","unstructured":"J. C. Cuaresma, J. Hlouskova, S. Kossmeier, and M. Obersteiner, \u201cForecasting electricity spot-prices using linear univariate time-series models,\u201d Applied Energy, Vol.77, pp. 87-106, 2004.","DOI":"10.1016\/S0306-2619(03)00096-5"},{"key":"key-10.20965\/jaciii.2017.p0031-77","doi-asserted-by":"crossref","unstructured":"J. W. Taylor and R. Buizza, \u201cDensity forecasting for weather derivative pricing,\u201d Int. J. of Forecasting, Vol.22, pp. 29-42, 2006.","DOI":"10.1016\/j.ijforecast.2005.05.004"},{"key":"key-10.20965\/jaciii.2017.p0031-78","doi-asserted-by":"crossref","unstructured":"S. Chattopadhyay and G. Chattopadhyay, \u201cUnivariate modelling of summer-monsoon rainfall time series: Comparison between ARIMA and ARNN,\u201d Comptes Rendus Geoscience, Vol.342, pp. 100-107, 2010.","DOI":"10.1016\/j.crte.2009.10.016"},{"key":"key-10.20965\/jaciii.2017.p0031-79","doi-asserted-by":"crossref","unstructured":"M. Maric, E. d. Haan, S. M. Hogendoorn, L. H. Wolters, and H. M. Huizenga, \u201cEvaluating Statistical and Clinical Significance of Intervention Effects in Single-Case Experimental Designs: An SPSS Method to Analyze Univariate Data,\u201d Behavior Therapy, Vol.46, pp. 230-241, 2015.","DOI":"10.1016\/j.beth.2014.09.005"},{"key":"key-10.20965\/jaciii.2017.p0031-80","doi-asserted-by":"crossref","unstructured":"Y. Yin and P. Shang, \u201cForecasting traffic time series with multivariate predicting method,\u201d Applied Mathematics and Computation, Vol.291, pp. 266-278, 2016.","DOI":"10.1016\/j.amc.2016.07.017"},{"key":"key-10.20965\/jaciii.2017.p0031-81","doi-asserted-by":"crossref","unstructured":"Z. Li and M. Kafatos, \u201cInterannual Variability of Vegetation in the United States and Its Relation to El Ni\u00f1o\/Southern Oscillation,\u201d Remote Sensing of Environment, Vol.71, pp. 239-247, 2000.","DOI":"10.1016\/S0034-4257(99)00034-6"},{"key":"key-10.20965\/jaciii.2017.p0031-82","doi-asserted-by":"crossref","unstructured":"X. Chen and X. Chen, \u201cSensitivity analysis and determination of streambed leakance and aquifer hydraulic properties,\u201d J. of Hydrology, Vol.284, pp. 270-284, 2003.","DOI":"10.1016\/j.jhydrol.2003.08.004"},{"key":"key-10.20965\/jaciii.2017.p0031-83","doi-asserted-by":"crossref","unstructured":"A. M\u00fcller, H. Osterhage, R. Sowa, R. G. Andrzejak, F. Mormann, and K. Lehnertz, \u201cA distributed computing system for multivariate time series analyses of multichannel neurophysiological data,\u201d J. of Neuroscience Methods, Vol.152, pp. 190-201, 2006.","DOI":"10.1016\/j.jneumeth.2005.09.002"},{"key":"key-10.20965\/jaciii.2017.p0031-84","doi-asserted-by":"crossref","unstructured":"F. Duch\u00eane, C. Garbay, and Vincent Rialle, \u201cLearning recurrent behaviors from heterogeneous multivariate time-series,\u201d Artificial Intelligence in Medicine, Vol.39, pp. 25-47, 2007.","DOI":"10.1016\/j.artmed.2006.07.004"},{"key":"key-10.20965\/jaciii.2017.p0031-85","doi-asserted-by":"crossref","unstructured":"K. C. Perera, A. W. Western, B. George, and B. Nawarathna, \u201cMultivariate time series modeling of short-term system scale irrigation demand,\u201d J. of Hydrology, Vol.531, pp. 1003-1019, 2015.","DOI":"10.1016\/j.jhydrol.2015.11.007"},{"key":"key-10.20965\/jaciii.2017.p0031-86","doi-asserted-by":"crossref","unstructured":"A. Karahoca, D. Karahoca, and M. Sanver, \u201cSurvey of Data Mining and Applications (Review from 1996 to Now),\u201d Data Mining Applications in Engineering and Medicine, InTech, 2012.","DOI":"10.5772\/48803"},{"key":"key-10.20965\/jaciii.2017.p0031-87","doi-asserted-by":"crossref","unstructured":"P. L. Gozalo and O. B. Linton, \u201cTesting additivity in generalized nonparametric regression models with estimated parameters,\u201d J. of Econometrics, Vol.104, pp. 1-48, 2001.","DOI":"10.1016\/S0304-4076(01)00049-5"},{"key":"key-10.20965\/jaciii.2017.p0031-88","doi-asserted-by":"crossref","unstructured":"S. Kim, S. Imoto, and S. Miyano, \u201cDynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data,\u201d Biosystems, Vol.75, pp. 57-65, 2004.","DOI":"10.1016\/j.biosystems.2004.03.004"},{"key":"key-10.20965\/jaciii.2017.p0031-89","doi-asserted-by":"crossref","unstructured":"S. Efromovich, \u201cNonparametric regression with responses missing at random,\u201d J. of Statistical Planning and Inference, Vol.141, pp. 3744-3752, 2011.","DOI":"10.1016\/j.jspi.2011.06.017"},{"key":"key-10.20965\/jaciii.2017.p0031-90","doi-asserted-by":"crossref","unstructured":"N. Yampikulsakul, E. Byon, S. Huang, S. Sheng, and M. You, \u201cCondition Monitoring of Wind Power System With Nonparametric Regression Analysis,\u201d IEEE Trans. on Energy Conversion, Vol.29, pp. 288-299, 2014.","DOI":"10.1109\/TEC.2013.2295301"},{"key":"key-10.20965\/jaciii.2017.p0031-91","doi-asserted-by":"crossref","unstructured":"N. N. Kachouie, T. Gerke, P. Huybers, and A. Schwartzman, \u201cNonparametric Regression for Estimation of Spatiotemporal Mountain Glacier Retreat From Satellite Images,\u201d IEEE Trans. on Geoscience and Remote Sensing, Vol.53, pp. 1135-1149, 2015.","DOI":"10.1109\/TGRS.2014.2334643"},{"key":"key-10.20965\/jaciii.2017.p0031-92","doi-asserted-by":"crossref","unstructured":"Z. Pan, Y. Wang, and C. Wu, \u201cA nonparametric approach to test for predictability,\u201d Economics Letters, Vol.148, pp. 10-16, 2016.","DOI":"10.1016\/j.econlet.2016.09.006"},{"key":"key-10.20965\/jaciii.2017.p0031-93","doi-asserted-by":"crossref","unstructured":"T. H. Soukissian and F. E. Karathanasi, \u201cOn the use of robust regression methods in wind speed assessment,\u201d Renewable Energy, Vol.99, pp. 1287-1298, 2016.","DOI":"10.1016\/j.renene.2016.08.009"},{"key":"key-10.20965\/jaciii.2017.p0031-94","doi-asserted-by":"crossref","unstructured":"K. A. Weigel and S. W. Lin, \u201cDevelopment of Int. Conversion Equations Using Robust Regression Methodology,\u201d J. of Dairy Science, Vol.82, pp. 2023-2029, 1999.","DOI":"10.3168\/jds.S0022-0302(99)75440-8"},{"key":"key-10.20965\/jaciii.2017.p0031-95","doi-asserted-by":"crossref","unstructured":"A. C. Atkinson and T. C. Cheng, \u201cOn robust linear regression with incomplete data,\u201d Computational Statistics & Data Analysis, Vol.33, pp. 361-380, 2000.","DOI":"10.1016\/S0167-9473(99)00061-4"},{"key":"key-10.20965\/jaciii.2017.p0031-96","doi-asserted-by":"crossref","unstructured":"D. E. Booth and K. Lee, \u201cRobust regression-based analysis of drug-nucleic acid binding,\u201d Analytical Biochemistry, Vol.319, pp. 258-262, 2003.","DOI":"10.1016\/S0003-2697(03)00290-2"},{"key":"key-10.20965\/jaciii.2017.p0031-97","doi-asserted-by":"crossref","unstructured":"M. C. Ortiz, L. A. Sarabia, and A. Herrero, \u201cRobust regression techniques: A useful alternative for the detection of outlier data in chemical analysis,\u201d Talanta, Vol.70, pp. 499-512, 2006.","DOI":"10.1016\/j.talanta.2005.12.058"},{"key":"key-10.20965\/jaciii.2017.p0031-98","doi-asserted-by":"crossref","unstructured":"V. Fritsch, B. D. Mota, G. V. Eva Loth, T. Banaschewski, G. J. Barker, A. L. W. Bokde, et al., \u201cRobust regression for large-scale neuroimaging studies,\u201d NeuroImage, Vol.111, pp. 431-441, 2015.","DOI":"10.1016\/j.neuroimage.2015.02.048"},{"key":"key-10.20965\/jaciii.2017.p0031-99","doi-asserted-by":"crossref","unstructured":"Andy Leung, H. Zhang, and R. Zamar, \u201cRobust regression estimation and inference in the presence of cellwise and casewise contamination,\u201d Computational Statistics & Data Analysis, Vol.99, pp. 1-11, 2016.","DOI":"10.1016\/j.csda.2016.01.004"},{"key":"key-10.20965\/jaciii.2017.p0031-100","doi-asserted-by":"crossref","unstructured":"R. J. Holzworth, \u201cPolicy Capturing with Ridge Regression,\u201d Organizational Behavior and Human Decision Processes, Vol.68, pp. 171-179, 1996.","DOI":"10.1006\/obhd.1996.0097"},{"key":"key-10.20965\/jaciii.2017.p0031-101","doi-asserted-by":"crossref","unstructured":"J. Huang, D. Brennan, L. Sattler, J. Alderman, B. Lane, and C. O\u2019Mathuna, \u201cA comparison of calibration methods based on calibration data size and robustness,\u201d Chemometrics and Intelligent Laboratory Systems, Vol.62, pp. 25-35, 2002.","DOI":"10.1016\/S0169-7439(01)00211-8"},{"key":"key-10.20965\/jaciii.2017.p0031-102","doi-asserted-by":"crossref","unstructured":"L. M. Grosso, E. W. Triche, K. Belanger, N. L. Benowitz, T. R. Holford, and M. B. Bracken, \u201cAssociation of caffeine metabolites in umbilical cord blood with IUGR and preterm delivery: A prospective cohort study of 1609 pregnancies,\u201d Annals of Epidemiology, Vol.115, pp. 659-660, 2005.","DOI":"10.1016\/j.annepidem.2005.07.037"},{"key":"key-10.20965\/jaciii.2017.p0031-103","doi-asserted-by":"crossref","unstructured":"X. Yu and S. Y. Liong, \u201cForecasting of hydrologic time series with ridge regression in feature space,\u201d J. of Hydrology, Vol.332, pp. 290-302, 2007.","DOI":"10.1016\/j.jhydrol.2006.07.003"},{"key":"key-10.20965\/jaciii.2017.p0031-104","doi-asserted-by":"crossref","unstructured":"P. Mohapatra, S. Chakravarty, and P. K. Dash, \u201cMicroarray medical data classification using kernel ridge regression and modified cat swarm optimization based gene selection system,\u201d Swarm and Evolutionary Computation, Vol.20, pp. 144-160, 2016.","DOI":"10.1016\/j.swevo.2016.02.002"},{"key":"key-10.20965\/jaciii.2017.p0031-105","doi-asserted-by":"crossref","unstructured":"K. Jin, S. Lee, S. Lee, and G. Heo, \u201cDevelopment of nuclear forensic models using kernel regression,\u201d Progress in Nuclear Energy, Vol.94, pp. 55-63, 2017.","DOI":"10.1016\/j.pnucene.2016.10.003"},{"key":"key-10.20965\/jaciii.2017.p0031-106","doi-asserted-by":"crossref","unstructured":"G. Y. Heo, \u201cCondition monitoring using empirical models: technical review and prospects for nuclear applications,\u201d Nuclear Engineering and Technology, Vol.40, pp. 49-68, 2008.","DOI":"10.5516\/NET.2008.40.1.049"},{"key":"key-10.20965\/jaciii.2017.p0031-107","doi-asserted-by":"crossref","unstructured":"D. Lanari and C. T. E D\u2019Agaro, \u201cUse of nonlinear regression to evaluate the effects of phytase enzyme treatment of plant protein diets for rainbow trout (Oncorhynchus mykiss),\u201d Aquaculture, Vol.161, pp. 345-356, 1998.","DOI":"10.1016\/S0044-8486(97)00282-2"},{"key":"key-10.20965\/jaciii.2017.p0031-108","doi-asserted-by":"crossref","unstructured":"P. F. Schikora and M. R. Godfrey, \u201cEfficacy of end-user neural network and data mining software for predicting complex system performance,\u201d Int. J. of Production Economics, Vol.84, pp. 231-253.","DOI":"10.1016\/S0925-5273(03)00003-3"},{"key":"key-10.20965\/jaciii.2017.p0031-109","doi-asserted-by":"crossref","unstructured":"M. Mohanty, D. K. Painuli, A. K. Misra, K. K. Bandyopadhyaya, and P. K. Ghosh, \u201cEstimating impact of puddling, tillage and residue management on wheat (Triticum aestivum, L.) seedling emergence and growth in a rice\u2013wheat system using nonlinear regression models,\u201d Soil and Tillage Research, Vol.87, pp. 119-130, 2006.","DOI":"10.1016\/j.still.2005.03.002"},{"key":"key-10.20965\/jaciii.2017.p0031-110","doi-asserted-by":"crossref","unstructured":"D. Kimura, M. Nii, T. Yamaguchi, Y. Takahashi, and T. Yumoto, \u201cFuzzy Nonlinear Regression Analysis Using Fuzzified Neural Networks for Fault Diagnosis of Chemical Plants,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.15, pp. 336-344, 2011.","DOI":"10.20965\/jaciii.2011.p0336"},{"key":"key-10.20965\/jaciii.2017.p0031-111","doi-asserted-by":"crossref","unstructured":"N. Deshpande, S. Londhe, and S. Kulkarni, \u201cModeling compressive strength of recycled aggregate concrete by Artificial Neural Network, Model Tree and Non-linear Regression,\u201d Int. J. of Sustainable Built Environment, Vol.3, pp. 187-198, 2014.","DOI":"10.1016\/j.ijsbe.2014.12.002"},{"key":"key-10.20965\/jaciii.2017.p0031-112","doi-asserted-by":"crossref","unstructured":"S. Tomlinson, \u201cNovel approaches to the calculation and comparison of thermoregulatory parameters: Non-linear regression of metabolic rate and evaporative water loss in Australian rodents,\u201d J. of Thermal Biology, Vol.57, pp. 54-65, 2016.","DOI":"10.1016\/j.jtherbio.2016.01.012"},{"key":"key-10.20965\/jaciii.2017.p0031-113","doi-asserted-by":"crossref","unstructured":"G. E. Hinton, \u201cLearning multiple layers of representation,\u201d TRENDS in Cognitive Sciences, Vol.11, pp. 428-434, 2007.","DOI":"10.1016\/j.tics.2007.09.004"},{"key":"key-10.20965\/jaciii.2017.p0031-114","unstructured":"S. Raschka, \u201cWhat is the Difference Between Deep Learning and \u201cRegular\u201d Machine Learning?\u201d Available: http:\/\/www.kdnuggets.com\/2016\/06\/difference-between-deep-learning-regular-machine-learning.html"},{"key":"key-10.20965\/jaciii.2017.p0031-115","doi-asserted-by":"crossref","unstructured":"Y. LeCun, Y. Bengio, and G. Hinton, \u201cDeep Learning,\u201d Nature, Vol.521, pp. 436-444, 2015.","DOI":"10.1038\/nature14539"},{"key":"key-10.20965\/jaciii.2017.p0031-116","doi-asserted-by":"crossref","unstructured":"E. d. l. Rosa and W. Yu, \u201cRandomized algorithms for nonlinear system identification with deep learning modification,\u201d Information Sciences, Vol.364-365, pp. 197-212, 2016.","DOI":"10.1016\/j.ins.2015.09.048"},{"key":"key-10.20965\/jaciii.2017.p0031-117","doi-asserted-by":"crossref","unstructured":"Soniya, S. Paul, and L. Singh, \u201cA review on advances in deep learning,\u201d IEEE Workshop on Computational Intelligence: Theories, Applications and Future Directions (WCI), 2015.","DOI":"10.1109\/WCI.2015.7495514"},{"key":"key-10.20965\/jaciii.2017.p0031-118","unstructured":"S. Curtis, \u201cWhat To Expect from Deep Learning in 2016 and Beyond,\u201d http:\/\/www.kdnuggets.com\/2016\/01\/deep-learning-2016-beyond.html"},{"key":"key-10.20965\/jaciii.2017.p0031-119","doi-asserted-by":"crossref","unstructured":"D. Cirecsan, U. Meier, J. Masci, and J. Schmidhuber, \u201cMulti-column deep neural network for traffic sign classification,\u201d Neural Networks, Vol.32, pp. 333-338, 2012.","DOI":"10.1016\/j.neunet.2012.02.023"},{"key":"key-10.20965\/jaciii.2017.p0031-120","doi-asserted-by":"crossref","unstructured":"K. Noda, H. Arie, Y. Suga, and T. Ogata, \u201cMultimodal integration learning of robot behavior using deep neural networks,\u201d Robotics and Autonomous Systems, Vol.62, pp. 721-736, 2014.","DOI":"10.1016\/j.robot.2014.03.003"},{"key":"key-10.20965\/jaciii.2017.p0031-121","doi-asserted-by":"crossref","unstructured":"Y. Zhou, Q. Hu, J. Liu, and Y. Jia, \u201cCombining heterogeneous deep neural networks with conditional random fields for Chinese dialogue act recognition,\u201d Neurocomputing, Vol.168, pp. 408-417, 2016.","DOI":"10.1016\/j.neucom.2015.05.086"},{"key":"key-10.20965\/jaciii.2017.p0031-122","doi-asserted-by":"crossref","unstructured":"E. P. Ijjina and C. K. Mohan, \u201cHybrid deep neural network model for human action recognition,\u201d Applied Soft Computing, Vol.46, pp. 936-952, 2016.","DOI":"10.1016\/j.asoc.2015.08.025"},{"key":"key-10.20965\/jaciii.2017.p0031-123","doi-asserted-by":"crossref","unstructured":"R. Kumari, Sheetanshu, M. K. Singh, R. Jha, and N. K. Singh, \u201cAnomaly detection in network traffic using K-mean clustering,\u201d The 3rd Int. Conf. on Recent Advances in Information Technology 2016 (RAIT), 2016.","DOI":"10.1109\/RAIT.2016.7507933"},{"key":"key-10.20965\/jaciii.2017.p0031-124","doi-asserted-by":"crossref","unstructured":"C. W. Chen, J. Luo, and K. J. Parker, \u201cImage segmentation via adaptive K-mean clustering and knowledge-based morphological operations with biomedical applications,\u201d IEEE Trans. on Image Processing, Vol.7, pp. 1673-1683, 1998.","DOI":"10.1109\/83.730379"},{"key":"key-10.20965\/jaciii.2017.p0031-125","doi-asserted-by":"crossref","unstructured":"Y. M. Marzouk and Ahmed F. Ghoniem, \u201cK-means clustering for optimal partitioning and dynamic load balancing of parallel hierarchical N-body simulations,\u201d J. of Computational Physics, Vol.207, pp. 493-528, 2005.","DOI":"10.1016\/j.jcp.2005.01.021"},{"key":"key-10.20965\/jaciii.2017.p0031-126","doi-asserted-by":"crossref","unstructured":"S. C. Babu and P. Sanyal, \u201cChapter 13 \u2013 Classifying households on food security and poverty dimensions \u2013 application of K-mean cluster analysis,\u201d Food Security, Poverty and Nutrition Policy Analysi, pp. 265-277, Academic Press, 2009.","DOI":"10.1016\/B978-0-12-374712-9.00013-4"},{"key":"key-10.20965\/jaciii.2017.p0031-127","doi-asserted-by":"crossref","unstructured":"L. H. Juang and M. N. Wu, \u201cMRI brain lesion image detection based on color-converted K-means clustering segmentation,\u201d Measurement, Vol.43, pp. 941-949, 2010.","DOI":"10.1016\/j.measurement.2010.03.013"},{"key":"key-10.20965\/jaciii.2017.p0031-128","doi-asserted-by":"crossref","unstructured":"Y. Ning, X. Zhu, S. Zhu, and Y. Zhang, \u201cSurface EMG Decomposition Based on K-means Clustering and Convolution Kernel Compensation,\u201d IEEE J. of Biomedical and Health Informatics, Vol.19, pp. 471-477, 2015.","DOI":"10.1109\/JBHI.2014.2328497"},{"key":"key-10.20965\/jaciii.2017.p0031-129","doi-asserted-by":"crossref","unstructured":"O. Kesemen, \u00d6. Tezel, and E. \u00d6zkul, \u201cFuzzy c-means clustering algorithm for directional data (FCM4DD),\u201d Expert Systems with Applications, Vol.58, pp. 76-82, 2016.","DOI":"10.1016\/j.eswa.2016.03.034"},{"key":"key-10.20965\/jaciii.2017.p0031-130","doi-asserted-by":"crossref","unstructured":"J. Nayak, B. Naik, and H. S. Behera, \u201cFuzzy C-Means (FCM) ClusteringAlgorithm: A Decade Reviewfrom 2000 to 2014,\u201d Computational Intelligence in Data Mining, Vol.2, pp. 133-149, 2015.","DOI":"10.1007\/978-81-322-2208-8_14"},{"key":"key-10.20965\/jaciii.2017.p0031-131","doi-asserted-by":"crossref","unstructured":"M. Gil, E. G. Sarabia, J. R. Llata, and J. P. Oria, \u201cFuzzy c-means clustering for noise reduction, enhancement and reconstruction of 3D ultrasonic images,\u201d 7th IEEE Int. Conf. on Emerging Technologies and Factory Automation, 1999.","DOI":"10.1109\/ETFA.1999.815392"},{"key":"key-10.20965\/jaciii.2017.p0031-132","doi-asserted-by":"crossref","unstructured":"M. Hanesch, R. S. a, and M. J. D. b, \u201cThe application of fuzzy C-means cluster analysis and non-linear mapping to a soil data set for the detection of polluted sites,\u201d Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, Vol.26, pp. 885-891, 2001.","DOI":"10.1016\/S1464-1895(01)00137-5"},{"key":"key-10.20965\/jaciii.2017.p0031-133","doi-asserted-by":"crossref","unstructured":"M. Maitra and A. Chatterjee, \u201cHybrid multiresolution Slantlet transform and fuzzy c-means clustering approach for normal-pathological brain MR image segregation,\u201d Medical Engineering & Physics, Vol.30, pp. 615-623, 2008.","DOI":"10.1016\/j.medengphy.2007.06.009"},{"key":"key-10.20965\/jaciii.2017.p0031-134","doi-asserted-by":"crossref","unstructured":"Z. Xue, Y. Shang, and A. Feng, \u201cSemi-supervised outlier detection based on fuzzy rough C-means clustering,\u201d Mathematics and Computers in Simulation, Vol.80, pp. 1911-1921, 2010.","DOI":"10.1016\/j.matcom.2010.02.007"},{"key":"key-10.20965\/jaciii.2017.p0031-135","unstructured":"M. L. a, M. F. b, and G. Haiyan, \u201cThe E-commerce Risk Early-Warning Model Based on the Unascertained C-means Clustering,\u201d Procedia Engineering, Vol.15, pp. 4740-4744, 2011."},{"key":"key-10.20965\/jaciii.2017.p0031-136","doi-asserted-by":"crossref","unstructured":"A. M. Abdulshahed, A. P. Longstaff, S. Fletcher, and A. Myers, \u201cThermal error modelling of machine tools based on ANFIS with fuzzy c-means clustering using a thermal imaging camera,\u201d Applied Mathematical Modelling, Vol.39, pp. 1837-1852, 2015.","DOI":"10.1016\/j.apm.2014.10.016"},{"key":"key-10.20965\/jaciii.2017.p0031-137","doi-asserted-by":"crossref","unstructured":"O. Kesemen, \u00d6. Tezel, and E. \u00d6zkul, \u201cFuzzy c-means clustering algorithm for directional data (FCM4DD),\u201d Expert Systems with Applications, Vol.58, pp. 76-82, 2016.","DOI":"10.1016\/j.eswa.2016.03.034"},{"key":"key-10.20965\/jaciii.2017.p0031-138","doi-asserted-by":"crossref","unstructured":"T. P. Hong, C. S. Kuo, and S. L. Wang, \u201cA fuzzy AprioriTid mining algorithm with reduced computational time,\u201d Applied Soft Computing, Vol.5, pp. 1-10, 2004.","DOI":"10.1016\/j.asoc.2004.03.009"},{"key":"key-10.20965\/jaciii.2017.p0031-139","doi-asserted-by":"crossref","unstructured":"K. H. Kaoru Shimada, and Jinglu Hu, \u201cAlternate Genetic Network Programming with Association Rules Acquisition Mechanisms Between Attribute Families,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.10, pp. 954-963, 2006.","DOI":"10.20965\/jaciii.2006.p0954"},{"key":"key-10.20965\/jaciii.2017.p0031-140","doi-asserted-by":"crossref","unstructured":"B. C. Chien, M. H. Zhong, and J. J. Wang, \u201cMining Fuzzy Association Rules on Has-A and Is-A Hierarchical Structures,\u201d J. Adv. Comput. Intell. Intell. Inform. (JACIII), Vol.11, pp. 423-432, 2007.","DOI":"10.20965\/jaciii.2007.p0423"},{"key":"key-10.20965\/jaciii.2017.p0031-141","doi-asserted-by":"crossref","unstructured":"C. Aflori and M. Craus, \u201cGrid implementation of the Apriori algorithm,\u201d Advances in Engineering Software, Vol.38, pp. 295-300, 2006.","DOI":"10.1016\/j.advengsoft.2006.08.011"},{"key":"key-10.20965\/jaciii.2017.p0031-142","doi-asserted-by":"crossref","unstructured":"L. Hanguang and N. Yu, \u201cIntrusion Detection Technology Research Based on Apriori Algorithm,\u201d Physics Procedia, Vol.24, pp. 1615-1620, 2012.","DOI":"10.1016\/j.phpro.2012.02.238"},{"key":"key-10.20965\/jaciii.2017.p0031-143","doi-asserted-by":"crossref","unstructured":"W. Renli, D. Yueming, and D. Liming, \u201cThe application of Apriori-BSO algorithms in medical records data mining,\u201d IEEE Information Technology, Networking, Electronic and Automation Control Conf. 2016, 2016.","DOI":"10.1109\/ITNEC.2016.7560477"},{"key":"key-10.20965\/jaciii.2017.p0031-144","doi-asserted-by":"crossref","unstructured":"L. Feng, T. Dillon, and J. Liu, \u201cInter-transactional association rules for multi-dimensional contexts for prediction and their application to studying meteorological data,\u201d Data & Knowledge Engineering, Vol.37, pp. 85-115, 2001.","DOI":"10.1016\/S0169-023X(01)00003-9"},{"key":"key-10.20965\/jaciii.2017.p0031-145","unstructured":"E. Fern\u00e1ndez-Medina, J. Trujillo, R. Villarroel, and M. Piattini, \u201cAccess control and audit model for the multidimensional modeling of data warehouses,\u201d Decision Support Systems, Vol.42, pp. 1270-1289, 2006."},{"key":"key-10.20965\/jaciii.2017.p0031-146","doi-asserted-by":"crossref","unstructured":"J. Yan, L. Zhang, F. Zhao, W. Liu, and K. Li, \u201cMultidimensional Association Analysis of Web Users\u2019 Access Path for Website Design and Promotion,\u201d Sixth Int. Conf. on Fuzzy Systems and Knowledge Discovery, 2009.","DOI":"10.1109\/FSKD.2009.765"},{"key":"key-10.20965\/jaciii.2017.p0031-147","unstructured":"G. Liu, H. Jiang, R. Geng, and H. Li, \u201cApplication of multidimensional association rules in personal financial services,\u201d Int. Conf. on Computer Design and Applications (ICCDA), 2010."},{"key":"key-10.20965\/jaciii.2017.p0031-148","doi-asserted-by":"crossref","unstructured":"Y. L. Y. Zou, X. Qin, and S. Ma, \u201cResearch and application of association rule mining algorithm based on multidimensional sets,\u201d 5th IEEE Int. Conf. on Software Engineering and Service Science (ICSESS), Beijing, 2014.","DOI":"10.1109\/ICSESS.2014.6933629"},{"key":"key-10.20965\/jaciii.2017.p0031-149","unstructured":"X. Zhu, \u201cQuantitative Association Rules,\u201d Encyclopedia of Database Systems, pp. 2240-2244, 2009."},{"key":"key-10.20965\/jaciii.2017.p0031-150","doi-asserted-by":"crossref","unstructured":"D. Adhikary and S. Roy, \u201cTrends in Quantitative Association Rule Mining,\u201d IEEE 2nd Int. Conf. on Recent Trends in Information Systems (ReTIS), 2015.","DOI":"10.1109\/ReTIS.2015.7232865"},{"key":"key-10.20965\/jaciii.2017.p0031-151","doi-asserted-by":"crossref","unstructured":"W. Lian, D. W. Cheung, and S. M. Yiu, \u201cAn efficient algorithm for finding dense regions for mining quantitative association rules,\u201d Computers & Mathematics with Applications, Vol.50, pp. 471-490, 2005.","DOI":"10.1016\/j.camwa.2005.03.009"},{"key":"key-10.20965\/jaciii.2017.p0031-152","doi-asserted-by":"crossref","unstructured":"M. Mart\u00ednez-Ballesteros, I. Nepomuceno-Chamorro, and J. C. Riquelme, \u201cInferring gene-gene associations from Quantitative Association Rules,\u201d 11th Int. Conf. on Intelligent Systems Design and Applications (ISDA), 2011.","DOI":"10.1109\/ISDA.2011.6121829"},{"key":"key-10.20965\/jaciii.2017.p0031-153","doi-asserted-by":"crossref","unstructured":"X. Dong and D. Pi, \u201cAn Effective Method for Mining Quantitative Association Rules with Clustering Partition in Satellite Telemetry Data,\u201d Second Int. Conf. on Advanced Cloud and Big Data (CBD), 2014.","DOI":"10.1109\/CBD.2014.12"},{"key":"key-10.20965\/jaciii.2017.p0031-154","doi-asserted-by":"crossref","unstructured":"A. P. Wright, A. T. Wright, A. B. McCoy, and D. F. Sittig, \u201cThe use of sequential pattern mining to predict next prescribed medications,\u201d J. of Biomedical Informatics, Vol.53, pp. 73-80, 2015.","DOI":"10.1016\/j.jbi.2014.09.003"},{"key":"key-10.20965\/jaciii.2017.p0031-155","doi-asserted-by":"crossref","unstructured":"M. B. Schmid, \u201cNovel approaches to the discovery of antimicrobial agents,\u201d Novel approaches to the discovery of antimicrobial agents, Vol.2, pp. 529-534, 1998.","DOI":"10.1016\/S1367-5931(98)80130-0"},{"key":"key-10.20965\/jaciii.2017.p0031-156","doi-asserted-by":"crossref","unstructured":"G. Labesse, D. Douguet, L. Assairi, and A. M. Gilles, \u201cDiacylglyceride kinases, sphingosine kinases and NAD kinases: distant relatives of 6-phosphofructokinases,\u201d Trends in Biochemical Sciences, Vol.27, pp. 273-275, 2002.","DOI":"10.1016\/S0968-0004(02)02093-5"},{"key":"key-10.20965\/jaciii.2017.p0031-157","doi-asserted-by":"crossref","unstructured":"T. P. Exarchos, C. Papaloukas, C. Lampros, and D. I. Fotiadis, \u201cMining sequential patterns for protein fold recognition,\u201d J. of Biomedical Informatics, Vol.41, pp. 165-179, 2008.","DOI":"10.1016\/j.jbi.2007.05.004"},{"key":"key-10.20965\/jaciii.2017.p0031-158","unstructured":"Shilpa and M. Kaur, \u201cBIG Data and Methodology-A review,\u201d Int. J. of Advanced Research in Computer Science and Software Engineering, Vol.3, pp. 991-995, 2013."},{"key":"key-10.20965\/jaciii.2017.p0031-159","unstructured":"B. Thakur and M. Mann, \u201cData Mining for Big Data: A Review,\u201d Int. J. of Advanced Research in Computer Science and Software Engineering, Vol.4, pp. 469-473, 2014."},{"key":"key-10.20965\/jaciii.2017.p0031-160","doi-asserted-by":"crossref","unstructured":"Ishwarappa and J. Anuradha, \u201cA Brief Introduction on Big Data 5Vs Characteristics and Hadoop Technology,\u201d Int. Conf. on Computer, Communication and Convergence (ICCC-2015), 2015.","DOI":"10.1016\/j.procs.2015.04.188"},{"key":"key-10.20965\/jaciii.2017.p0031-161","unstructured":"I. I. Center, \u201cVision Paper Distributed Data Mining and Big Data,\u201d Intel Corporation, pp. 1-14, 2012."},{"key":"key-10.20965\/jaciii.2017.p0031-162","unstructured":"V. Shobaba, S. Maheshwair, and M. Savithri, \u201cStudy on Big data with Data Mining,\u201d Int. J. of Advanced Research in Computer and Communication Engineering, Vol.4, pp. 381-383, 2015."}],"container-title":["Journal of Advanced Computational Intelligence and Intelligent Informatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.fujipress.jp\/main\/wp-content\/themes\/Fujipress\/phyosetsu.php?ppno=JACII002100010005","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,17]],"date-time":"2019-09-17T15:40:01Z","timestamp":1568734801000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.fujipress.jp\/jaciii\/jc\/jacii002100010031"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,1,20]]},"references-count":162,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2017,1,20]]},"published-print":{"date-parts":[[2017,1,20]]}},"URL":"https:\/\/doi.org\/10.20965\/jaciii.2017.p0031","relation":{},"ISSN":["1883-8014","1343-0130"],"issn-type":[{"type":"electronic","value":"1883-8014"},{"type":"print","value":"1343-0130"}],"subject":[],"published":{"date-parts":[[2017,1,20]]}}}