{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,7]],"date-time":"2024-08-07T01:10:26Z","timestamp":1722993026300},"reference-count":27,"publisher":"Fuji Technology Press Ltd.","issue":"6","funder":[{"DOI":"10.13039\/501100001691","name":"Japan Society for the Promotion of Science","doi-asserted-by":"publisher","award":["18K11740"],"id":[{"id":"10.13039\/501100001691","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IJAT","Int. J. Automation Technol."],"published-print":{"date-parts":[[2020,11,5]]},"abstract":"Energy savings and reduction in environmental burdens are necessitated to enhance sustainable manufacturing performances. Not only should energy consumption in the factory be visualized, but also a mechanism, by which in-process production and energy-related information measured in the shop floor are fed back into planning\/scheduling decision-making, must be established to improve the energy efficiency during manufacturing execution. This study addresses the effect of scheduling on the improvement of energy efficiency in manufacturing by connecting a developed measurement and control platform with a real manufacturing system. The manufacturing system testbed utilized in this study forms a simple flow-type flexible manufacturing system composed of automated manufacturing cell with a CNC lathe, material-handling manipulator, and vertical machining center. We focus on the task scheduling of the material-handling manipulator, which yields a job sequence, and the effect of task scheduling of the manipulator on the energy efficiency and productivity of the entire manufacturing system.<\/jats:p>","DOI":"10.20965\/ijat.2020.p0943","type":"journal-article","created":{"date-parts":[[2020,11,4]],"date-time":"2020-11-04T15:02:25Z","timestamp":1604502145000},"page":"943-950","source":"Crossref","is-referenced-by-count":3,"title":["Task Scheduling of Material-Handling Manipulator for Enhancing Energy Efficiency in Flow-Type FMS"],"prefix":"10.20965","volume":"14","author":[{"given":"Ryo","family":"Yonemoto","sequence":"first","affiliation":[]},{"name":"Setsunan University 17-8 Ikeda-naka-machi, Neyagawa, Osaka 572-8508, Japan","sequence":"first","affiliation":[]},{"given":"Haruhiko","family":"Suwa","sequence":"additional","affiliation":[]}],"member":"8550","published-online":{"date-parts":[[2020,11,5]]},"reference":[{"key":"key-10.20965\/ijat.2020.p0943-1","unstructured":"H. Makita, Y. Shida, and N. Nozue, \u201cFactory Energy Management System Using Production Information,\u201d Mitsubishi Electric Advance, Vol.140, pp. 7-11, 2012."},{"key":"key-10.20965\/ijat.2020.p0943-2","doi-asserted-by":"crossref","unstructured":"K.-D. Thoben, S. Wiesner, and T. Wuest, \u201c\u2018Industrie 4.0\u2019 and smart manufacturing: A review of research issues and application examples,\u201d Int. J. Automation Technol., Vol.11, No.1, pp. 4-16, 2017.","DOI":"10.20965\/ijat.2017.p0004"},{"key":"key-10.20965\/ijat.2020.p0943-3","doi-asserted-by":"crossref","unstructured":"J. R. Duflou, J. W. Sutherland, D. Dornfeld, C. Herrmann, J. Jeswiet, S. Kara, M. Hauschild, and K. Kellens, \u201cTowards energy and resource efficient manufacturing: A processes and systems approach,\u201d CIRP Annals \u2013 Manufacturing Technology, Vol.61, No.2, pp. 587-609, 2012.","DOI":"10.1016\/j.cirp.2012.05.002"},{"key":"key-10.20965\/ijat.2020.p0943-4","doi-asserted-by":"crossref","unstructured":"R. Yonemoto and H. Suwa, \u201cEvaluation of Energy Efficiency and Productivity in Scheduling by Using Physical Simulator,\u201d Trans. of the Institute of Systems, Control and Information Engineers, Vol.32, No.5, pp. 185-191, 2019.","DOI":"10.5687\/iscie.32.185"},{"key":"key-10.20965\/ijat.2020.p0943-5","doi-asserted-by":"crossref","unstructured":"T. Samukawa and H. Suwa, \u201cDevelopment of heterogeneous measurement system for predicting power consumption in eco-machining,\u201d Proc. of 2016 Int. Symp. on Flexible Automation, pp. 413-419, 2016.","DOI":"10.1109\/ISFA.2016.7790197"},{"key":"key-10.20965\/ijat.2020.p0943-6","doi-asserted-by":"crossref","unstructured":"M. Fujishima, H. Shimanoe, and M. Mori, \u201cReducing the energy consumption of machine tools,\u201d Int. J. Automation Technol., Vol.11, No.4, pp. 601-607, 2017.","DOI":"10.20965\/ijat.2017.p0601"},{"key":"key-10.20965\/ijat.2020.p0943-7","doi-asserted-by":"crossref","unstructured":"H. Ohtani, \u201cDevelopment of energy-saving machine tool,\u201d Int. J. Automation Technol., Vol.11, No.4, pp. 608-614, 2017.","DOI":"10.20965\/ijat.2017.p0608"},{"key":"key-10.20965\/ijat.2020.p0943-8","doi-asserted-by":"crossref","unstructured":"T. Shudeleit, S. Z\u00fcst, L. Weiss, and K. Wegner, \u201cMachine tool energy efficiency: A component mapping-based approach,\u201d Int. J. Automation Technol., Vol.10, No.5, pp. 717-726, 2016.","DOI":"10.20965\/ijat.2016.p0717"},{"key":"key-10.20965\/ijat.2020.p0943-9","doi-asserted-by":"crossref","unstructured":"H. Koresawa, K. Tanaka, and H. Narahara, \u201cLow-energy injection molding process by a mold with permeability fabricated by additive manufacturing,\u201d Int. J. Automation Technol., Vol.10, No.1, pp. 101-105, 2016.","DOI":"10.20965\/ijat.2016.p0101"},{"key":"key-10.20965\/ijat.2020.p0943-10","doi-asserted-by":"crossref","unstructured":"A. Glodde and M. Afrough, \u201cEnergy efficiency evaluation of an underactuated robot in comparison to traditional robot kinematics,\u201d Procedia CIRP, Vol.23, pp. 127-130, 2014.","DOI":"10.1016\/j.procir.2014.10.087"},{"key":"key-10.20965\/ijat.2020.p0943-11","doi-asserted-by":"crossref","unstructured":"M. B. Paryanto, J. M. J. Kohl, and J. F. S. Spreng, \u201cEnergy consumption and dynamic behavior analysis of a six-axis industrial robot in an assembly system,\u201d Procedia CIRP, Vol.23, pp. 131-136, 2014.","DOI":"10.1016\/j.procir.2014.10.091"},{"key":"key-10.20965\/ijat.2020.p0943-12","doi-asserted-by":"crossref","unstructured":"E. Uhlmann, S. Reinkober, and T. Hollerbach, \u201cEnergy efficient usage of industrial robots for machining process,\u201d Procedia CIRP, Vol.48, pp. 206-211, 2016.","DOI":"10.1016\/j.procir.2016.03.241"},{"key":"key-10.20965\/ijat.2020.p0943-13","unstructured":"Y. Kawamura, H. Horiguchi, and T. Ono, \u201cA Framework for Optimal Planning Systems on the EMS Platform,\u201d Fuji Electric J., Vol.86, pp. 97-201, 2013."},{"key":"key-10.20965\/ijat.2020.p0943-14","doi-asserted-by":"crossref","unstructured":"H. Hibino, T. Sakuma, and M. Yamaguchi, \u201cEvaluation system for energy consumption and productivity in manufacturing system simulation,\u201d Int. J. Automation Technol., Vol.6, No.3, pp. 248-288, 2012.","DOI":"10.20965\/ijat.2012.p0279"},{"key":"key-10.20965\/ijat.2020.p0943-15","doi-asserted-by":"crossref","unstructured":"H. Hibino, Y. Fukuda, and Y. Yura, \u201cA synchronization mechanism with shared storage model for distributed manufacturing simulation systems,\u201d Int. J. Automation Technol., Vol.9, No.3, pp. 279-260, 2015.","DOI":"10.20965\/ijat.2015.p0248"},{"key":"key-10.20965\/ijat.2020.p0943-16","doi-asserted-by":"crossref","unstructured":"H. Hibino, M. Yamamoto, M. Yamaguchi, and T. Kobayashi, \u201cA study on lot-size dependence of energy consumption per unit of production throughput considering buffer capacity,\u201d Int. J. Automation Technol., Vol.11, No.1, pp. 46-55, 2017.","DOI":"10.20965\/ijat.2017.p0046"},{"key":"key-10.20965\/ijat.2020.p0943-17","doi-asserted-by":"crossref","unstructured":"C. Herrmann, S. Thiede, S. Kara, and J. Hesselbach, \u201cEnergy oriented simulation of manufacturing systems \u2013 Concept and application,\u201d CIRP Annals, Vol.60, No.1, pp. 45-48, 2011.","DOI":"10.1016\/j.cirp.2011.03.127"},{"key":"key-10.20965\/ijat.2020.p0943-18","doi-asserted-by":"crossref","unstructured":"J. Kohl, S. Spreng, and J. Franke, \u201cDiscrete Event Simulation of Individual Energy Consumption for Product-varieties,\u201d Procedia CIRP, Vol.17, pp. 517-522, 2014.","DOI":"10.1016\/j.procir.2014.01.088"},{"key":"key-10.20965\/ijat.2020.p0943-19","doi-asserted-by":"crossref","unstructured":"T. L. Garwood, B. R. Hughes, M. R. Oates, D. O\u2019Connor, and R. Hughes, \u201cA review of energy simulation tools for the manufacturing sector,\u201d Renewable and Sustainable Energy Reviews, Vol.81, No.1, pp. 895-911, 2018.","DOI":"10.1016\/j.rser.2017.08.063"},{"key":"key-10.20965\/ijat.2020.p0943-20","doi-asserted-by":"crossref","unstructured":"H. Murata, N. Yokono, S. Fukushige, and H. Kobayashi, \u201cA lifecycle simulation method for global reuse,\u201d Int. J. Automation Technol., Vol.12, No.6, pp. 814-821, 2018.","DOI":"10.20965\/ijat.2018.p0814"},{"key":"key-10.20965\/ijat.2020.p0943-21","doi-asserted-by":"crossref","unstructured":"Y. Mizuno, Y. Kishita, S. Fukushige, and Y. Umeda, \u201cEnvisioning sustainable manufacturing industries of Japan,\u201d Int. J. Automation Technol., Vol.8, No.5, pp. 634-643, 2014.","DOI":"10.20965\/ijat.2014.p0634"},{"key":"key-10.20965\/ijat.2020.p0943-22","doi-asserted-by":"crossref","unstructured":"M. M. Isnaini, Y. Shinoki, R. Sato, and K. Shirase, \u201cDevelopment of a CAD-CAM interaction system to generate a flexible machining process plan,\u201d Int. J. Automation Technol., Vol.9, No.2, pp. 104-114, 2015.","DOI":"10.20965\/ijat.2015.p0104"},{"key":"key-10.20965\/ijat.2020.p0943-23","doi-asserted-by":"crossref","unstructured":"T. Samukawa and H. Suwa, \u201cAn optimization of energy-efficiency in machining manufacturing systems based on a framework of multi-mode RCPSP,\u201d Int. J. Automation Technol., Vol.10, No.6, pp. 985-992, 2016.","DOI":"10.20965\/ijat.2016.p0985"},{"key":"key-10.20965\/ijat.2020.p0943-24","doi-asserted-by":"crossref","unstructured":"C. Gahm, F. Denz, M. Dirr, and A. Tuma, \u201cEnergy-efficient scheduling in manufacturing companies: A review and research framework,\u201d European J. of Operational Research, Vol.248, pp. 744-757, 2016.","DOI":"10.1016\/j.ejor.2015.07.017"},{"key":"key-10.20965\/ijat.2020.p0943-25","doi-asserted-by":"crossref","unstructured":"C. Artigues, P. Lopez, and A. Ha\u00eft, \u201cThe energy scheduling problem: Industrial case-study and constraint propagation techniques,\u201d Int. J. of Production Economics, Vol.143, No.1, pp. 13-23, 2013.","DOI":"10.1016\/j.ijpe.2010.09.030"},{"key":"key-10.20965\/ijat.2020.p0943-26","unstructured":"Z. Zhang, R. Tang, T. Peng, L. Tao, and S. Jia, \u201cA method for minimizing the energy consumption of machining system: integration of process planning and scheduling,\u201d J. of Cleaner Production, Vol.137, pp. 1647-1662, 2016."},{"key":"key-10.20965\/ijat.2020.p0943-27","unstructured":"R. Yonemoto, H. Suwa, and T. Samukawa, \u201cEvaluation of energy efficiency in scheduling by using cyber-physical manufacturing simulator,\u201d Proc. of Int. Symp. on Scheduling, pp. 111-116, 2017."}],"container-title":["International Journal of Automation Technology"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.fujipress.jp\/main\/wp-content\/themes\/Fujipress\/phyosetsu.php?ppno=IJATE001400060009","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2020,11,4]],"date-time":"2020-11-04T15:08:18Z","timestamp":1604502498000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.fujipress.jp\/ijat\/au\/ijate001400060943"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,11,5]]},"references-count":27,"journal-issue":{"issue":"6","published-online":{"date-parts":[[2020,11,5]]},"published-print":{"date-parts":[[2020,11,5]]}},"URL":"https:\/\/doi.org\/10.20965\/ijat.2020.p0943","relation":{},"ISSN":["1883-8022","1881-7629"],"issn-type":[{"type":"electronic","value":"1883-8022"},{"type":"print","value":"1881-7629"}],"subject":[],"published":{"date-parts":[[2020,11,5]]}}}