{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:35:23Z","timestamp":1726763723248},"reference-count":46,"publisher":"Zhejiang University Press","issue":"1","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Front Inform Technol Electron Eng"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1631\/fitee.2300314","type":"journal-article","created":{"date-parts":[[2024,2,8]],"date-time":"2024-02-08T08:04:06Z","timestamp":1707379446000},"page":"149-159","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":2,"title":["Deep3DSketch-im: rapid high-fidelity AI 3D model generation by single freehand sketches","Deep3DSketch-im:\u57fa\u4e8e\u4eba\u5de5\u667a\u80fd\u4ece\u5355\u4e2a\u624b\u7ed8\u8349\u56fe\u5feb\u901f\u751f\u6210\u9ad8\u4fdd\u771f\u4e09\u7ef4\u6a21\u578b"],"prefix":"10.1631","volume":"25","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0177-0157","authenticated-orcid":false,"given":"Tianrun","family":"Chen","sequence":"first","affiliation":[]},{"given":"Runlong","family":"Cao","sequence":"additional","affiliation":[]},{"given":"Zejian","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1361-1500","authenticated-orcid":false,"given":"Ying","family":"Zang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5561-0493","authenticated-orcid":false,"given":"Lingyun","family":"Sun","sequence":"additional","affiliation":[]}],"member":"635","published-online":{"date-parts":[[2024,2,8]]},"reference":[{"key":"314_CR1","doi-asserted-by":"publisher","unstructured":"Cai YJ, Wang YW, Zhu YH, et al., 2021. A unified 3D human motion synthesis model via conditional variational autoencoder. IEEE\/CVF Int Conf on Computer Vision, p.11625\u201311635. https:\/\/doi.org\/10.1109\/ICCV48922.2021.01144","DOI":"10.1109\/ICCV48922.2021.01144"},{"key":"314_CR2","unstructured":"Chang AX, Funkhouser T, Guibas L, et al., 2015. ShapeNet: an information-rich 3D model repository. https:\/\/arxiv.org\/abs\/1512.03012"},{"issue":"3","key":"314_CR3","doi-asserted-by":"publisher","first-page":"223","DOI":"10.1111\/1467-8659.00669","volume":"22","author":"DY Chen","year":"2003","unstructured":"Chen DY, Tian XP, Shen YT, et al., 2003. On visual similarity based 3D model retrieval. Comput Graph Forum, 22(3):223\u2013232. https:\/\/doi.org\/10.1111\/1467-8659.00669","journal-title":"Comput Graph Forum"},{"key":"314_CR4","doi-asserted-by":"publisher","unstructured":"Chen TR, Fu CL, Zhu LY, et al., 2023a. Deep3DSketch: 3D modeling from free-hand sketches with view- and structural-aware adversarial training. IEEE Int Conf on Acoustics, Speech and Signal Processing, p.1\u20135. https:\/\/doi.org\/10.1109\/ICASSP49357.2023.10096348","DOI":"10.1109\/ICASSP49357.2023.10096348"},{"key":"314_CR5","doi-asserted-by":"publisher","unstructured":"Chen TR, Fu CL, Zang Y, et al., 2023b. Deep3DSketch+: rapid 3D modeling from single free-hand sketches. Proc 29th Int Conf on Multimedia Modeling, p.16\u201328. https:\/\/doi.org\/10.1007\/978-3-031-27818-1_2","DOI":"10.1007\/978-3-031-27818-1_2"},{"key":"314_CR6","doi-asserted-by":"publisher","unstructured":"Chen TR, Ding CT, Zhu LY, et al., 2023c. Reality3DSketch: rapid 3D modeling of objects from single freehand sketches. IEEE Trans Multim, early access. https:\/\/doi.org\/10.1109\/TMM.2023.3327533","DOI":"10.1109\/TMM.2023.3327533"},{"key":"314_CR7","doi-asserted-by":"publisher","unstructured":"Chen ZQ, Zhang H, 2019. Learning implicit fields for generative shape modeling. IEEE\/CVF Conf on Computer Vision and Pattern Recognition, p.5932\u20135941. https:\/\/doi.org\/10.1109\/CVPR.2019.00609","DOI":"10.1109\/CVPR.2019.00609"},{"key":"314_CR8","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1007\/s10798-006-9015-z","volume":"17","author":"I Chester","year":"2007","unstructured":"Chester I, 2007. Teaching for CAD expertise. Int J Technol Des Educ, 17:23\u201335. https:\/\/doi.org\/10.1007\/s10798-006-9015-z","journal-title":"Int J Technol Des Educ"},{"key":"314_CR9","doi-asserted-by":"publisher","unstructured":"Cohen JM, Markosian L, Zeleznik RC, et al., 1999. An interface for sketching 3D curves. Symp on Interactive 3D Graphics, p.17\u201321. https:\/\/doi.org\/10.1145\/300523.300655","DOI":"10.1145\/300523.300655"},{"issue":"3","key":"314_CR10","doi-asserted-by":"publisher","first-page":"279","DOI":"10.1007\/s41095-019-0153-0","volume":"6","author":"CY Deng","year":"2020","unstructured":"Deng CY, Huang JH, Yang YL, 2020. Interactive modeling of lofted shapes from a single image. Comput Visual Med, 6(3):279\u2013289. https:\/\/doi.org\/10.1007\/s41095-019-0153-0","journal-title":"Comput Visual Med"},{"key":"314_CR11","doi-asserted-by":"publisher","unstructured":"Fu X, Zhang SZ, Chen TR, et al., 2022. Panoptic NeRF: 3D-to-2D label transfer for panoptic urban scene segmentation. Int Conf on 3D Vision, p.1\u201311. https:\/\/doi.org\/10.1109\/3DV57658.2022.00042","DOI":"10.1109\/3DV57658.2022.00042"},{"key":"314_CR12","doi-asserted-by":"publisher","unstructured":"Gao CJ, Yu Q, Sheng L, et al., 2022. SketchSampler: sketch-based 3D reconstruction via view-dependent depth sampling. Proc 17th European Conf on Computer Vision, p.464\u2013479. https:\/\/doi.org\/10.1007\/978-3-031-19769-7_27","DOI":"10.1007\/978-3-031-19769-7_27"},{"key":"314_CR13","doi-asserted-by":"publisher","unstructured":"Guillard B, Remelli E, Yvernay P, et al., 2021. Sketch2Mesh: reconstructing and editing 3D shapes from sketches. IEEE\/CVF Int Conf on Computer Vision, p.13003\u201313012. https:\/\/doi.org\/10.1109\/ICCV48922.2021.01278","DOI":"10.1109\/ICCV48922.2021.01278"},{"issue":"1","key":"314_CR14","doi-asserted-by":"publisher","first-page":"135","DOI":"10.1631\/FITEE.2300303","volume":"25","author":"SS Huang","year":"2024","unstructured":"Huang SS, Wang YH, 2024. Controllable image generation based on causal representation learning. Front Inform Technol Electron Eng, 25(1):135\u2013148. https:\/\/doi.org\/10.1631\/FITEE.2300303","journal-title":"Front Inform Technol Electron Eng"},{"key":"314_CR15","doi-asserted-by":"publisher","unstructured":"Jo K, Shim G, Jung S, et al., 2023. CG-NeRF: conditional generative neural radiance fields for 3D-aware image synthesis. IEEE\/CVF Winter Conf on Applications of Computer Vision, p.724\u2013733. https:\/\/doi.org\/10.1109\/WACV56688.2023.00079","DOI":"10.1109\/WACV56688.2023.00079"},{"key":"314_CR16","unstructured":"Kar A, H\u00e4ne C, Malik J, 2017. Learning a multi-view stereo machine. Proc 31st Int Conf on Neural Information Processing Systems, p.364\u2013375."},{"key":"314_CR17","doi-asserted-by":"publisher","unstructured":"Kato H, Ushiku Y, Harada T, 2018. Neural 3D mesh renderer. IEEE\/CVF Conf on Computer Vision and Pattern Recognition, p.3907\u20133916. https:\/\/doi.org\/10.1109\/CVPR.2018.00411","DOI":"10.1109\/CVPR.2018.00411"},{"issue":"1","key":"314_CR18","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1631\/FITEE.2300389","volume":"25","author":"YM Lei","year":"2024","unstructured":"Lei YM, Li JQ, 2024. Prompt learning in computer vision: a survey. Front Inform Technol Electron Eng, 25(1):42\u201363. https:\/\/doi.org\/10.1631\/FITEE.2300389","journal-title":"Front Inform Technol Electron Eng"},{"issue":"6","key":"314_CR19","doi-asserted-by":"publisher","first-page":"164","DOI":"10.1145\/3414685.3417807","volume":"39","author":"CJ Li","year":"2020","unstructured":"Li CJ, Pan H, Bousseau A, et al., 2020. Sketch2CAD: sequential CAD modeling by sketching in context. ACM Trans Graph, 39(6):164. https:\/\/doi.org\/10.1145\/3414685.3417807","journal-title":"ACM Trans Graph"},{"key":"314_CR20","unstructured":"Lin CH, Wang CY, Lucey S, 2020. SDF-SRN: learning signed distance 3D object reconstruction from static images. Proc 34th Int Conf on Neural Information Processing Systems, Article 961."},{"key":"314_CR21","unstructured":"Lin GY, Yang L, Zhang CY, et al., 2023. Patch-Grid: an efficient and feature-preserving neural implicit surface representation. https:\/\/arxiv.org\/abs\/2308.13934"},{"key":"314_CR22","unstructured":"Liu SC, Saito S, Chen WK, et al., 2019a. Learning to infer implicit surfaces without 3D supervision. Proc 33rd Int Conf on Neural Information Processing Systems, Article 32."},{"key":"314_CR23","doi-asserted-by":"publisher","unstructured":"Liu SC, Chen WK, Li TY, et al., 2019b. Soft rasterizer: a differentiable renderer for image-based 3D reasoning. IEEE\/CVF Int Conf on Computer Vision, p.7707\u20137716. https:\/\/doi.org\/10.1109\/ICCV.2019.00780","DOI":"10.1109\/ICCV.2019.00780"},{"key":"314_CR24","doi-asserted-by":"publisher","unstructured":"Mahapatra C, Jensen JK, McQuaid M, et al., 2019. Barriers to end-user designers of augmented fabrication. CHI Conf on Human Factors in Computing Systems, Article 383. https:\/\/doi.org\/10.1145\/3290605.3300613","DOI":"10.1145\/3290605.3300613"},{"key":"314_CR25","doi-asserted-by":"crossref","unstructured":"Metzer G, Richardson E, Patashnik O, et al., 2022. LatentNeRF for shape-guided generation of 3D shapes and textures. https:\/\/arxiv.org\/abs\/2211.07600","DOI":"10.1109\/CVPR52729.2023.01218"},{"key":"314_CR26","doi-asserted-by":"publisher","unstructured":"Michel O, Bar-On R, Liu R, et al., 2022. Text2Mesh: text-driven neural stylization for meshes. IEEE\/CVF Conf on Computer Vision and Pattern Recognition, p.13482\u201313492. https:\/\/doi.org\/10.1109\/CVPR52688.2022.01313","DOI":"10.1109\/CVPR52688.2022.01313"},{"key":"314_CR27","doi-asserted-by":"publisher","unstructured":"Park JJ, Florence P, Straub J, et al., 2019. DeepSDF: learning continuous signed distance functions for shape representation. IEEE\/CVF Conf on Computer Vision and Pattern Recognition, p.165\u2013174. https:\/\/doi.org\/10.1109\/CVPR.2019.00025","DOI":"10.1109\/CVPR.2019.00025"},{"issue":"4","key":"314_CR28","doi-asserted-by":"publisher","first-page":"3139","DOI":"10.1016\/j.aej.2018.07.010","volume":"57","author":"EJ Reddy","year":"2018","unstructured":"Reddy EJ, Rangadu VP, 2018. Development of knowledge based parametric CAD modeling system for spur gear: an approach. Alex Eng J, 57(4):3139\u20133149. https:\/\/doi.org\/10.1016\/j.aej.2018.07.010","journal-title":"Alex Eng J"},{"key":"314_CR29","doi-asserted-by":"publisher","unstructured":"Seufert M, 2019. Fundamental advantages of considering quality of experience distributions over mean opinion scores. Proc 11th Int Conf on Quality of Multimedia Experience, p.1\u20136. https:\/\/doi.org\/10.1109\/QoMEX.2019.8743296","DOI":"10.1109\/QoMEX.2019.8743296"},{"issue":"9","key":"314_CR30","doi-asserted-by":"publisher","first-page":"1290","DOI":"10.1631\/FITEE.2200318","volume":"23","author":"X Tong","year":"2022","unstructured":"Tong X, 2022. Three-dimensional shape space learning for visual concept construction: challenges and research progress. Front Inform Technol Electron Eng, 23(9):1290\u20131297. https:\/\/doi.org\/10.1631\/FITEE.2200318","journal-title":"Front Inform Technol Electron Eng"},{"key":"314_CR31","doi-asserted-by":"publisher","unstructured":"Tong YZ, Yuan JK, Zhang M, et al., 2023. Quantitatively measuring and contrastively exploring heterogeneity for domain generalization. Proc 29th ACM SIGKDD Conf on Knowledge Discovery and Data Mining, p.2189\u20132200. https:\/\/doi.org\/10.1145\/3580305.3599481","DOI":"10.1145\/3580305.3599481"},{"key":"314_CR32","doi-asserted-by":"publisher","unstructured":"Wang F, Kang L, Li Y, 2015. Sketch-based 3D shape retrieval using convolutional neural networks. IEEE Conf on Computer Vision and Pattern Recognition, p.1875\u20131883. https:\/\/doi.org\/10.1109\/CVPR.2015.7298797","DOI":"10.1109\/CVPR.2015.7298797"},{"key":"314_CR33","unstructured":"Wang WY, Xu QG, Ceylan D, et al., 2019. DISN: deep implicit surface network for high-quality single-view 3D reconstruction. Proc 33rd Int Conf on Neural Information Processing Systems, Article 45."},{"issue":"6","key":"314_CR34","doi-asserted-by":"publisher","first-page":"228","DOI":"10.1145\/3550454.3555443","volume":"41","author":"R Xu","year":"2022","unstructured":"Xu R, Wang ZX, Dou ZY, et al., 2022. RFEPS: reconstructing feature-line equipped polygonal surface. ACM Trans Graph, 41(6):228. https:\/\/doi.org\/10.1145\/3550454.3555443","journal-title":"ACM Trans Graph"},{"issue":"4","key":"314_CR35","doi-asserted-by":"publisher","first-page":"111","DOI":"10.1145\/3592129","volume":"42","author":"R Xu","year":"2023","unstructured":"Xu R, Dou ZY, Wang NN, et al., 2023. Globally consistent normal orientation for point clouds by regularizing the winding-number field. ACM Trans Graph, 42(4):111. https:\/\/doi.org\/10.1145\/3592129","journal-title":"ACM Trans Graph"},{"key":"314_CR36","unstructured":"Yang L, Liang YQ, Li X, et al., 2023. Neural parametric surfaces for shape modeling. https:\/\/arxiv.org\/abs\/2309.09911"},{"key":"314_CR37","unstructured":"Yao SY, Zhong RZ, Yan YC, et al., 2022. DFA-NeRF: personalized talking head generation via disentangled face attributes neural rendering. https:\/\/arxiv.org\/abs\/2201.00791"},{"key":"314_CR38","doi-asserted-by":"publisher","unstructured":"Yu A, Ye V, Tancik M, et al., 2021. pixelNeRF: neural radiance fields from one or few images. IEEE\/CVF Conf on Computer Vision and Pattern Recognition, p.4576\u20134585. https:\/\/doi.org\/10.1109\/CVPR46437.2021.00455","DOI":"10.1109\/CVPR46437.2021.00455"},{"key":"314_CR39","doi-asserted-by":"crossref","unstructured":"Zang Y, Fu CL, Chen TR, et al., 2023. Deep3DSketch+: obtaining customized 3D model by single free-hand sketch through deep learning. https:\/\/arxiv.org\/abs\/2310.18609","DOI":"10.1109\/SMC53992.2023.10393936"},{"key":"314_CR40","doi-asserted-by":"publisher","unstructured":"Zhang SH, Guo YC, Gu QW, 2021. Sketch2Model: view-aware 3D modeling from single free-hand sketches. IEEE\/CVF Conf on Computer Vision and Pattern Recognition, p.6000\u20136017. https:\/\/doi.org\/10.1109\/CVPR46437.2021.00595","DOI":"10.1109\/CVPR46437.2021.00595"},{"key":"314_CR41","doi-asserted-by":"publisher","unstructured":"Zhang SZ, Peng SD, Chen TR, et al., 2023. Painting 3D nature in 2D: view synthesis of natural scenes from a single semantic mask. IEEE\/CVF Conf on Computer Vision and Pattern Recognition, p.8518\u20138528. https:\/\/doi.org\/10.1109\/CVPR52729.2023.00823","DOI":"10.1109\/CVPR52729.2023.00823"},{"key":"314_CR42","doi-asserted-by":"publisher","unstructured":"Zhong Y, Gryaditskaya Y, Zhang HG, et al., 2020. Deep sketch-based modeling: tips and tricks. Int Conf on 3D Vision, p.543\u2013552. https:\/\/doi.org\/10.1109\/3DV50981.2020.00064","DOI":"10.1109\/3DV50981.2020.00064"},{"key":"314_CR43","doi-asserted-by":"publisher","unstructured":"Zhou J, Ke P, Qiu XP, et al., 2023. ChatGPT: potential, prospects, and limitations. Front Inform Technol Electron Eng, early access. https:\/\/doi.org\/10.1631\/FITEE.2300089","DOI":"10.1631\/FITEE.2300089"},{"key":"314_CR44","unstructured":"Zhu DD, Li YC, Zhang M, et al., 2023a. Bridging the gap: neural collapse inspired prompt tuning for generalization under class imbalance. https:\/\/arxiv.org\/abs\/2306.15955v2"},{"key":"314_CR45","doi-asserted-by":"publisher","unstructured":"Zhu DD, Li YC, Shao YF, et al., 2023b. Generalized universal domain adaptation with generative flow networks. Proc 31st ACM Int Conf on Multimedia, p.8304\u20138315. https:\/\/doi.org\/10.1145\/3581783.3612225","DOI":"10.1145\/3581783.3612225"},{"key":"314_CR46","doi-asserted-by":"crossref","unstructured":"Zhu DD, Li YC, Yuan JK, et al., 2023c. Universal domain adaptation via compressive attention matching. IEEE\/CVF Int Conf on Computer Vision, p.6974\u20136985.","DOI":"10.1109\/ICCV51070.2023.00642"}],"container-title":["Frontiers of Information Technology & Electronic Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1631\/FITEE.2300314.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/article\/10.1631\/FITEE.2300314\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/link.springer.com\/content\/pdf\/10.1631\/FITEE.2300314.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,20]],"date-time":"2024-06-20T03:40:37Z","timestamp":1718854837000},"score":1,"resource":{"primary":{"URL":"https:\/\/link.springer.com\/10.1631\/FITEE.2300314"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":46,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2024,1]]}},"alternative-id":["314"],"URL":"https:\/\/doi.org\/10.1631\/fitee.2300314","relation":{},"ISSN":["2095-9184","2095-9230"],"issn-type":[{"value":"2095-9184","type":"print"},{"value":"2095-9230","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,1]]},"assertion":[{"value":"30 April 2023","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"26 November 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"8 February 2024","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"Lingyun SUN is an editor-in-chief assistant of this special issue, and he was not involved with the peer review process of this paper. All the authors declare that they have no conflict of interest.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Compliance with ethics guidelines"}}]}}