{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,7,4]],"date-time":"2023-07-04T04:25:31Z","timestamp":1688444731857},"reference-count":29,"publisher":"Institute of Electronics, Information and Communications Engineers (IEICE)","issue":"8","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEICE Trans. Inf. & Syst."],"published-print":{"date-parts":[[2013]]},"DOI":"10.1587\/transinf.e96.d.1745","type":"journal-article","created":{"date-parts":[[2013,7,31]],"date-time":"2013-07-31T23:35:54Z","timestamp":1375313754000},"page":"1745-1753","source":"Crossref","is-referenced-by-count":7,"title":["Extreme Maximum Margin Clustering"],"prefix":"10.1587","volume":"E96.D","author":[{"given":"Chen","family":"ZHANG","sequence":"first","affiliation":[{"name":"School of Computer Science and Technology, China University of Mining and Technology"}]},{"given":"ShiXiong","family":"XIA","sequence":"additional","affiliation":[{"name":"School of Computer Science and Technology, China University of Mining and Technology"}]},{"given":"Bing","family":"LIU","sequence":"additional","affiliation":[{"name":"School of Computer Science and Technology, China University of Mining and Technology"}]},{"given":"Lei","family":"ZHANG","sequence":"additional","affiliation":[{"name":"School of Computer Science and Technology, China University of Mining and Technology"}]}],"member":"532","reference":[{"key":"1","doi-asserted-by":"crossref","unstructured":"[1] J.A. Hartigan and M.A. Wong, “A k-means clustering algorithm,” J. Royal Statistical Society, Series C (Applied Statistics), vol.28, pp.100-108, 1979.","DOI":"10.2307\/2346830"},{"key":"2","doi-asserted-by":"crossref","unstructured":"[2] R.A. Redner and H.F. Walker, “Mixture densities, maximum likelihood and the EM algorithm,” SIAM Review, vol.26, pp.195-239, 1984.","DOI":"10.1137\/1026034"},{"key":"3","unstructured":"[3] C. Ding, X. He, H. Zha, M. Gu, and H.D. Simon, A min-max cut algorithm for graph partitioning and data clustering, Proc. 1st Int. Conf. Data Mining 2001, pp.107-114, 2001."},{"key":"4","doi-asserted-by":"crossref","unstructured":"[4] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol.22, no.8, pp.888-905, 2000.","DOI":"10.1109\/34.868688"},{"key":"5","unstructured":"[5] L. Xu, J. Neufeld, B. Larson, and D. Schuurmans, “Maximum margin clustering,” Advances in Neural Information Processing Systems 17 (NIPS-17), pp.1537-1544, 2004."},{"key":"6","doi-asserted-by":"crossref","unstructured":"[6] J.F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optimization Methods and Software, vol.11, pp.625-653, 1999.","DOI":"10.1080\/10556789908805766"},{"key":"7","doi-asserted-by":"crossref","unstructured":"[7] K.C. Toh, M.J. Todd, and R.H. Tütüncü, “SDPT3 — a MATLAB software package for semidefinite programming, version 1.3,” Optimization Methods and Software, vol.11, pp.545-581, 1999.","DOI":"10.1080\/10556789908805762"},{"key":"8","doi-asserted-by":"crossref","unstructured":"[8] H. Valizadegan and R. Jin, “Generalized maximum margin clustering and unsupervised kernel learning,” Advances in Neural Information Processing Systems, vol.19, p.1417, 2007.","DOI":"10.7551\/mitpress\/7503.003.0182"},{"key":"9","doi-asserted-by":"crossref","unstructured":"[9] K. Zhang, I.W. Tsang, and J.T. Kwok, “Maximum margin clustering made practical,” IEEE Trans. Neural Netw., vol.20, no.4, pp.583-596, 2009.","DOI":"10.1109\/TNN.2008.2010620"},{"key":"10","unstructured":"[10] G.B. Huang, K. Mao, C.K. Siew, and D.S. Huang, “Fast modular network implementation for support vector machines,” IEEE Trans. Neural Netw., vol.16, no.8, pp.1651-1663, 2005."},{"key":"11","doi-asserted-by":"crossref","unstructured":"[11] C.W. Hsu and C.J. Lin, “A comparison of methods for multiclass support vector machines,” IEEE Trans. Neural Netw., vol.13, no.2, pp.415-425, 2002.","DOI":"10.1109\/72.991427"},{"key":"12","doi-asserted-by":"crossref","unstructured":"[12] Q. Liu, Q. He, and Z. Shi, “Extreme support vector machine classifier,” Lect. Notes Comput. Sci., vol.5012, pp.222-233, 2008.","DOI":"10.1007\/978-3-540-68125-0_21"},{"key":"13","doi-asserted-by":"crossref","unstructured":"[13] G.B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for regression and multiclass classification,” IEEE Trans. Syst. Man Cybern. B: Cybern., vol.42, no.2, pp.513-529, 2012.","DOI":"10.1109\/TSMCB.2011.2168604"},{"key":"14","doi-asserted-by":"crossref","unstructured":"[14] Y.H. Pao, G.H. Park, and D.J. Sobajic, “Learning and generalization characteristics of the random vector functional-link net,” Neurocomputing, vol.6, pp.163-180, 1994.","DOI":"10.1016\/0925-2312(94)90053-1"},{"key":"15","doi-asserted-by":"crossref","unstructured":"[15] L.P. Wang and C.R. Wan, Comments on “The extreme learning machine,” IEEE Trans. Neural Netw., vol.19, no.8, pp.1494-1495, 2008.","DOI":"10.1109\/TNN.2008.2002273"},{"key":"16","doi-asserted-by":"crossref","unstructured":"[16] B. Igelnik and Y.H. Pao, “Stochastic choice of basis functions in adaptive function approximation and the functional-link net,” IEEE Trans. Neural Netw., vol.6, no.6, pp.1320-1329, 1995.","DOI":"10.1109\/72.471375"},{"key":"17","unstructured":"[17] I.Y. Tyukin and D.V. Prokhorov, “Feasibility of random basis function approximators for modeling and control,” IEEE Conference on Control Applications, (CCA) & Intelligent Control, pp.1391-1396, 2009."},{"key":"18","unstructured":"[18] G.B. Huang, D.H. Wang, and Y. Lan, “Extreme learning machines: A survey,” Int. J. Machine Learning and Cybernetics, pp.1-16, 2011."},{"key":"19","doi-asserted-by":"crossref","unstructured":"[19] G.B. Huang, Q.Y. Zhu, and C.K. Siew, “Extreme learning machine: theory and applications,” Neurocomputing, vol.70, pp.489-501, 2006.","DOI":"10.1016\/j.neucom.2005.12.126"},{"key":"20","doi-asserted-by":"crossref","unstructured":"[20] E. Romero and R. Alquéar, “Comparing error minimized extreme learning machines and support vector sequential feedforward neural networks for classification problems,” IEEE Trans. Neural Netw., vol.25, no.1, pp.122-129, 2012.","DOI":"10.1016\/j.neunet.2011.08.005"},{"key":"21","doi-asserted-by":"crossref","unstructured":"[21] S. Mc Loone and G. Irwin, “Improving neural network training solutions using regularisation,” Neurocomputing, vol.37, pp.71-90, 2001.","DOI":"10.1016\/S0925-2312(00)00314-3"},{"key":"22","doi-asserted-by":"crossref","unstructured":"[22] S. McLoone, M.D. Brown, and G. Irwin, “A. lightbody, A hybrid linear\/nonlinear training algorithm for feedforward neural networks,” IEEE Trans. Neural Netw., vol.9, no.4, pp.669-684, 1998.","DOI":"10.1109\/72.701180"},{"key":"23","doi-asserted-by":"crossref","unstructured":"[23] F. Wang, B. Zhao, and C. Zhang, “Linear time maximum margin clustering,” IEEE Trans. Neural Netw., vol.21, no.2, pp.319-332, 2010.","DOI":"10.1109\/TNN.2009.2036998"},{"key":"24","unstructured":"[24] G.B. Huang, Q.Y. Zhu, and C.K. Siew, “Extreme learning ma-chine: A new learning scheme of feedforward neural networks,”Proc. International Joint Conference on Neural Networks(IJCNN2004), vol.2, pp.985-990, 2004."},{"key":"25","doi-asserted-by":"crossref","unstructured":"[25] G.B. Huang, L. Chen, and C.K. Siew, “Universal approximation using incremental constructive feedforward networks with random hidden nodes,” IEEE Trans. Neural Netw., vol.17, no.4, pp.879-892, 2006.","DOI":"10.1109\/TNN.2006.875977"},{"key":"26","doi-asserted-by":"crossref","unstructured":"[26] G.B. Huang and L. Chen, “Convex incremental extreme learning machine,” Neurocomputing, vol.70, pp.3056-3062, 2007.","DOI":"10.1016\/j.neucom.2007.02.009"},{"key":"27","unstructured":"[27] L. Xu, D. Wilkinson, F. Southey, and D. Schuurmans, “Discriminative unsupervised learning of structured predictors,” Proc. 23rd International Conference on Machine Learning, pp.1057-1064, 2006."},{"key":"28","doi-asserted-by":"crossref","unstructured":"[28] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol.22, no.8, pp.888-905, 2000.","DOI":"10.1109\/34.868688"},{"key":"29","doi-asserted-by":"crossref","unstructured":"[29] X. He, D. Cai, Y. Shao, H. Bao, and J. Han, “Laplacian regularized Gaussian mixture model for data clustering,” IEEE Trans. Knowl. Data Eng., vol.23, no.9, pp.1406-1418, 2011.","DOI":"10.1109\/TKDE.2010.259"}],"container-title":["IEICE Transactions on Information and Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transinf\/E96.D\/8\/E96.D_1745\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,3]],"date-time":"2023-07-03T15:53:56Z","timestamp":1688399636000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transinf\/E96.D\/8\/E96.D_1745\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2013]]},"references-count":29,"journal-issue":{"issue":"8","published-print":{"date-parts":[[2013]]}},"URL":"https:\/\/doi.org\/10.1587\/transinf.e96.d.1745","relation":{},"ISSN":["0916-8532","1745-1361"],"issn-type":[{"value":"0916-8532","type":"print"},{"value":"1745-1361","type":"electronic"}],"subject":[],"published":{"date-parts":[[2013]]}}}