{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,9,9]],"date-time":"2023-09-09T17:47:14Z","timestamp":1694281634577},"reference-count":28,"publisher":"Institute of Electronics, Information and Communications Engineers (IEICE)","issue":"10","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEICE Trans. Inf. & Syst."],"published-print":{"date-parts":[[2010]]},"DOI":"10.1587\/transinf.e93.d.2672","type":"journal-article","created":{"date-parts":[[2010,10,4]],"date-time":"2010-10-04T06:24:29Z","timestamp":1286173469000},"page":"2672-2679","source":"Crossref","is-referenced-by-count":8,"title":["Cartesian Kernel: An Efficient Alternative to the Pairwise Kernel"],"prefix":"10.1587","volume":"E93-D","author":[{"given":"Hisashi","family":"KASHIMA","sequence":"first","affiliation":[{"name":"Department of Mathematical Informatics, Graduate School of Information Science and Technology, The University of Tokyo"}]},{"given":"Satoshi","family":"OYAMA","sequence":"additional","affiliation":[{"name":"Graduate School of Information Science and Technology, Hokkaido University"}]},{"given":"Yoshihiro","family":"YAMANISHI","sequence":"additional","affiliation":[{"name":"Mines ParisTech, Centre for Computational Biology"}]},{"given":"Koji","family":"TSUDA","sequence":"additional","affiliation":[{"name":"AIST Computational Biology Research Center"}]}],"member":"532","reference":[{"key":"1","unstructured":"[1] T. Kato, K. Tsuda, and K. Asai, “Selective integration of multiple biological data for supervised network inference,” Bioinformatics, vol.21, no.10, pp.2488-2495, 2005."},{"key":"2","unstructured":"[2] J.P. Vert and Y. Yamanishi, “Supervised graph inference,” Advances in Neural Information Processing Systems 15, 2005."},{"key":"3","doi-asserted-by":"crossref","unstructured":"[3] Y. Yamanishi, J.P. Vert, and M. Kanehisa, “Supervised enzyme network inference from the integration of genomic data and chemical information,” Bioinformatics, vol.21, pp.i468-i477, 2005.","DOI":"10.1093\/bioinformatics\/bti1012"},{"key":"4","doi-asserted-by":"crossref","unstructured":"[4] L. Getoor and C.P. Diehl, “Link mining: A survey,” SIGKDD Explorations, vol.7, no.2, pp.3-12, 2005.","DOI":"10.1145\/1117454.1117456"},{"key":"5","doi-asserted-by":"crossref","unstructured":"[5] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press New York, NY, 2004.","DOI":"10.1017\/CBO9780511809682"},{"key":"6","doi-asserted-by":"crossref","unstructured":"[6] J. Basilico and T. Hofmann, “Unifying collaborative and content-based filtering,” Proc. 21st International Conference on Machine Learning (ICML), 2004.","DOI":"10.1145\/1015330.1015394"},{"key":"7","doi-asserted-by":"crossref","unstructured":"[7] A. Ben-Hur and W.S. Noble, “Kernel methods for predicting protein-protein interactions,” Bioinformatics, vol.21, no.Suppl.1, pp.i38-i46, 2005.","DOI":"10.1093\/bioinformatics\/bti1016"},{"key":"8","doi-asserted-by":"crossref","unstructured":"[8] S. Oyama and C.D. Manning, “Using feature conjunctions across examples for learning pairwise classifiers,” Proc. 15th European Conference on Machine Learning (ECML), pp.322-333, 2004.","DOI":"10.1007\/978-3-540-30115-8_31"},{"key":"9","unstructured":"[9] T. Evgeniou, C. Micchelli, and M. Pontil, “Learning multiple tasks with kernel methods,” J. Machine Learning Research, vol.6, no.1, p.615, 2006."},{"key":"10","unstructured":"[10] E. Bonilla, F. Agakov, and C. Williams, “Kernel multi-task learning using task-specific features,” 11th International Conference on Artificial Intelligence and Statistics (AISTATS), 2007."},{"key":"11","unstructured":"[11] B. Schölkopf, J. Shawe-Taylor, A. Smola, and R. Williamson, “Generalization bounds via eigenvalues of the gram matrix,” Tech. Rep. 99-035, NeuroColt, 1999."},{"key":"12","unstructured":"[12] R. Kroon, Support vector machines, generalization bounds and transduction, Masters Thesis, Stellenbosch University, 2003."},{"key":"13","doi-asserted-by":"crossref","unstructured":"[13] A.J. Laub, Matrix Analysis for Scientists and Engineers, Society for Industrial and Applied Mathematics, 2005.","DOI":"10.1137\/1.9780898717907"},{"key":"14","unstructured":"[14] W. Imrich and S. Klavzar, Product Graphs: Structure and Recognition, Wiley, 2000."},{"key":"15","doi-asserted-by":"publisher","DOI":"10.1093\/nar\/gkh063"},{"key":"16","doi-asserted-by":"publisher","DOI":"10.1038\/nature750"},{"key":"17","doi-asserted-by":"crossref","unstructured":"[17] K. Tsuda and W.S. Noble, “Learning kernels from biological networks by maximizing entropy,” Bioinformatics, vol.20, no.Suppl.1, pp.i326-i333, 2004.","DOI":"10.1093\/bioinformatics\/bth906"},{"key":"18","doi-asserted-by":"crossref","unstructured":"[18] Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, and M. Kanehisa, “Prediction of drug-target interaction networks from the integration of chemical and genomic spaces,” Bioinformatics, vol.24, pp.i232-i240, 2008.","DOI":"10.1093\/bioinformatics\/btn162"},{"key":"19","doi-asserted-by":"publisher","DOI":"10.1021\/ja036030u"},{"key":"20","doi-asserted-by":"publisher","DOI":"10.1016\/0022-2836(81)90087-5"},{"key":"21","unstructured":"[21] K. Ishibashi, K. Hatano, and M. Takeda, “Online learning of approximate maximum p<\/i>-norm margin classifiers with biases,” Proc. 21st Annual Conference on Learning Theory (COLT), 2008."},{"key":"22","doi-asserted-by":"crossref","unstructured":"[22] D. Liben-Nowell and J. Kleinberg, “The link prediction problem for social networks,” Proc. 12th International Conference on Information and Knowledge Management (CIKM), pp.556-559, 2004.","DOI":"10.1145\/956863.956972"},{"key":"23","unstructured":"[23] D. Lee and H. Seung, “Algorithms for non-negative matrix factorization,” Advances in Neural Information Processing Systems 13, 2001."},{"key":"24","unstructured":"[24] N. Srebro, J. Rennie, and T. Jaakkola, “Maximum-margin matrix factorization,” Advances in Neural Information Processing Systems 17, 2005."},{"key":"25","unstructured":"[25] M.A. Hasan, V. Chaoji, S. Salem, and M. Zaki, “Link prediction using supervised learning,” Workshop on Link Discovery: Issues, Approaches and Applications (LinkKDD), 2005."},{"key":"26","doi-asserted-by":"crossref","unstructured":"[26] J. O'Madadhain, J. Hutchins, and P. Smyth, “Prediction and ranking algorithms for event-based network data,” SIGKDD Explorations, vol.7, no.2, pp.23-30, 2005.","DOI":"10.1145\/1117454.1117458"},{"key":"27","doi-asserted-by":"crossref","unstructured":"[27] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “GroupLens: An open architecture for collaborative filtering of Netnews,” The Conference on Computer Supported Cooperative Work (CSCW), pp.175-186, 1994.","DOI":"10.1145\/192844.192905"},{"key":"28","doi-asserted-by":"crossref","unstructured":"[28] R. Caruana, “Multitask learning,” Mach. Learn., vol.28, no.1, pp.41-75, 1997.","DOI":"10.1023\/A:1007379606734"}],"container-title":["IEICE Transactions on Information and Systems"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/www.jstage.jst.go.jp\/article\/transinf\/E93.D\/10\/E93.D_10_2672\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,26]],"date-time":"2021-04-26T06:23:55Z","timestamp":1619418235000},"score":1,"resource":{"primary":{"URL":"http:\/\/www.jstage.jst.go.jp\/article\/transinf\/E93.D\/10\/E93.D_10_2672\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2010]]},"references-count":28,"journal-issue":{"issue":"10","published-print":{"date-parts":[[2010]]}},"URL":"https:\/\/doi.org\/10.1587\/transinf.e93.d.2672","relation":{},"ISSN":["0916-8532","1745-1361"],"issn-type":[{"value":"0916-8532","type":"print"},{"value":"1745-1361","type":"electronic"}],"subject":[],"published":{"date-parts":[[2010]]}}}