{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,10]],"date-time":"2024-05-10T05:09:09Z","timestamp":1715317749010},"reference-count":14,"publisher":"Institute of Electronics, Information and Communications Engineers (IEICE)","issue":"10","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEICE Trans. Inf. & Syst."],"published-print":{"date-parts":[[2022,10,1]]},"DOI":"10.1587\/transinf.2022edl8019","type":"journal-article","created":{"date-parts":[[2022,9,30]],"date-time":"2022-09-30T22:33:47Z","timestamp":1664577227000},"page":"1807-1811","source":"Crossref","is-referenced-by-count":1,"title":["End-to-End Object Separation for Threat Detection in Large-Scale X-Ray Security Images"],"prefix":"10.1587","volume":"E105.D","author":[{"given":"Joanna Kazzandra","family":"DUMAGPI","sequence":"first","affiliation":[{"name":"Dept. of Electronics and Communications Engineering, Kwangwoon University"}]},{"given":"Yong-Jin","family":"JEONG","sequence":"additional","affiliation":[{"name":"Dept. of Electronics and Communications Engineering, Kwangwoon University"}]}],"member":"532","reference":[{"key":"1","doi-asserted-by":"publisher","unstructured":"[1] S. Akcay and T. Breckon, \u201cTowards automatic threat detection: A survey of advances of deep learning within X-ray security imaging,\u201d Pattern Recognit., vol.122, Article No. 108245, 2022. 10.1016\/j.patcog.2021.108245","DOI":"10.1016\/j.patcog.2021.108245"},{"key":"2","doi-asserted-by":"publisher","unstructured":"[2] J.K. Dumagpi and Y.J. Jeong, \u201cPixel-level analysis for enhancing threat detection in large-scale X-ray security images,\u201d Applied Sciences, vol.11, no.21, Article No. 10261, Nov. 2021. 10.3390\/app112110261","DOI":"10.3390\/app112110261"},{"key":"3","doi-asserted-by":"publisher","unstructured":"[3] S. Ren, K. He, R. Girshick, and J. Sun, \u201cFaster R-CNN: Towards real-time object detection with region proposal networks,\u201d IEEE Trans. Pattern Anal. Mach. Intell., vol.39, no.6, pp.1137-1149, June 2017. 10.1109\/TPAMI.2016.2577031","DOI":"10.1109\/TPAMI.2016.2577031"},{"key":"4","doi-asserted-by":"crossref","unstructured":"[4] L.C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, \u201cEncoder-decoder with atrous separable convolution for semantic image segmentation,\u201d Computer Vision-ECCV 2018, ed. V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Cham, pp.833-851, Springer International Publishing, 2018. 10.1007\/978-3-030-01234-2_49","DOI":"10.1007\/978-3-030-01234-2_49"},{"key":"5","doi-asserted-by":"crossref","unstructured":"[5] K. He, G. Gkioxari, P. Doll\u00e1r, and R. Girshick, \u201cMask R-CNN,\u201d 2017 IEEE Int. Conf. Comput. Vis. (ICCV), pp.2980-2988, 2017. 10.1109\/ICCV.2017.322","DOI":"10.1109\/ICCV.2017.322"},{"key":"6","doi-asserted-by":"crossref","unstructured":"[6] K. He, X. Zhang, S. Ren, and J. Sun, \u201cDeep residual learning for image recognition,\u201d 2016 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.770-778, 2016. 10.1109\/CVPR.2016.90","DOI":"10.1109\/CVPR.2016.90"},{"key":"7","doi-asserted-by":"crossref","unstructured":"[7] T.Y. Lin, P. Doll\u00e1r, R. Girshick, K. He, B. Hariharan, and S. Belongie, \u201cFeature pyramid networks for object detection,\u201d 2017 IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.936-944, 2017. 10.1109\/CVPR.2017.106","DOI":"10.1109\/CVPR.2017.106"},{"key":"8","unstructured":"[8] J.K. Dumagpi, W.Y. Jung, and Y.J. Jeong, \u201cKnn-based automatic cropping for improved threat object recognition in X-ray security images,\u201d J. IKEEE, vol.23, no.4, pp.1134-1139, Dec. 2019. 10.7471\/ikeee.2019.23.4.1134"},{"key":"9","doi-asserted-by":"crossref","unstructured":"[9] C. Miao, L. Xie, F. Wan, C. Su, H. Liu, J. Jiao, and Q. Ye, \u201cSixray: A large-scale security inspection X-ray benchmark for prohibited item discovery in overlapping images,\u201d 2019 IEEE\/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), pp.2114-2123, 2019. 10.1109\/CVPR.2019.00222","DOI":"10.1109\/CVPR.2019.00222"},{"key":"10","doi-asserted-by":"crossref","unstructured":"[10] T.Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Doll\u00e1r, and C.L. Zitnick, \u201cMicrosoft coco: Common objects in context,\u201d Computer Vision-ECCV 2014, ed. D. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, Cham, pp.740-755, Springer International Publishing, 2014. 10.1007\/978-3-319-10602-1_48","DOI":"10.1007\/978-3-319-10602-1_48"},{"key":"11","doi-asserted-by":"publisher","unstructured":"[11] Y. Xu and J. Wei, \u201cDeep feature fusion based dual branch network for X-ray security inspection image classification,\u201d Applied Sciences, vol.11, no.16, Article No. 7485, Aug. 2021. 10.3390\/app11167485","DOI":"10.3390\/app11167485"},{"key":"12","doi-asserted-by":"publisher","unstructured":"[12] T. Hassan, S. Ak\u00e7ay, M. Bennamoun, S. Khan, and N. Werghi, \u201cTensor pooling-driven instance segmentation framework for baggage threat recognition,\u201d Neural Computing and Applications, vol.34, no.2, pp.1239-1250, Jan. 2022. 10.1007\/s00521-021-06411-x","DOI":"10.1007\/s00521-021-06411-x"},{"key":"13","doi-asserted-by":"publisher","unstructured":"[13] J.K. Dumagpi, W.Y. Jung, and Y.J. Jeong, \u201cA new gan-based anomaly detection (gbad) approach for multi-threat object classification on large-scale X-ray security images,\u201d IEICE Trans. Inf. & Syst., vol.E103-D, no.2, pp.454-458, Feb. 2020. 10.1587\/transinf.2019EDL8154","DOI":"10.1587\/transinf.2019EDL8154"},{"key":"14","doi-asserted-by":"publisher","unstructured":"[14] J.K. Dumagpi and Y.J. Jeong, \u201cEvaluating gan-based image augmentation for threat detection in large-scale Xray security images,\u201d Applied Sciences, vol.11, no.1, Article No. 36, Dec. 2020. 10.3390\/app11010036","DOI":"10.3390\/app11010036"}],"container-title":["IEICE Transactions on Information and Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transinf\/E105.D\/10\/E105.D_2022EDL8019\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,1]],"date-time":"2022-10-01T04:25:17Z","timestamp":1664598317000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transinf\/E105.D\/10\/E105.D_2022EDL8019\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10,1]]},"references-count":14,"journal-issue":{"issue":"10","published-print":{"date-parts":[[2022]]}},"URL":"https:\/\/doi.org\/10.1587\/transinf.2022edl8019","relation":{},"ISSN":["0916-8532","1745-1361"],"issn-type":[{"value":"0916-8532","type":"print"},{"value":"1745-1361","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,10,1]]},"article-number":"2022EDL8019"}}