{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,12,28]],"date-time":"2023-12-28T08:19:55Z","timestamp":1703751595554},"reference-count":31,"publisher":"Institute of Electronics, Information and Communications Engineers (IEICE)","issue":"8","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEICE Trans. Inf. & Syst."],"published-print":{"date-parts":[[2022,8,1]]},"DOI":"10.1587\/transinf.2021edp7190","type":"journal-article","created":{"date-parts":[[2022,7,31]],"date-time":"2022-07-31T22:19:37Z","timestamp":1659305977000},"page":"1443-1455","source":"Crossref","is-referenced-by-count":1,"title":["A Hybrid Genetic Service Mining Method Based on Trace Clustering Population"],"prefix":"10.1587","volume":"E105.D","author":[{"given":"Yahui","family":"TANG","sequence":"first","affiliation":[{"name":"School of Information, Yunnan University"}]},{"given":"Tong","family":"LI","sequence":"additional","affiliation":[{"name":"School of Big Data, Yunnan Agricultural University"}]},{"given":"Rui","family":"ZHU","sequence":"additional","affiliation":[{"name":"School of Software, Yunnan University"}]},{"given":"Cong","family":"LIU","sequence":"additional","affiliation":[{"name":"School of Computer Science and Technology, Shandong University of Technology"}]},{"given":"Shuaipeng","family":"ZHANG","sequence":"additional","affiliation":[{"name":"School of Computer Science and Technology, Shandong University of Technology"}]}],"member":"532","reference":[{"key":"1","doi-asserted-by":"publisher","unstructured":"[1] W.M. van der Aalst, \u201cService mining: Using process mining to discover, check, and improve service behavior,\u201d IEEE Trans. Serv, vol.6, no.4, pp.525-535, 2013. 10.1109\/tsc.2012.25","DOI":"10.1109\/TSC.2012.25"},{"key":"2","doi-asserted-by":"publisher","unstructured":"[2] D. Kossmann, F. Leymann, and D. Taubner, \u201cWeb Services,\u201d Informatik-Spektrum, vol.27, no.2, pp.113-114, 2004. 10.1007\/s00287-004-0377-x","DOI":"10.1007\/s00287-004-0377-x"},{"key":"3","doi-asserted-by":"crossref","unstructured":"[3] J. Buijs, B.V. Dongen, and W.V.D. Aalst, \u201cA genetic algorithm for discovering process trees,\u201d IEEE C Evol. Comput., pp.1-8, 2012.","DOI":"10.1109\/CEC.2012.6256458"},{"key":"4","doi-asserted-by":"crossref","unstructured":"[4] S.J.J. Leemans, D. Fahland, and W.M.P.V.D. Aalst, \u201cDiscovering block-structured process models from incomplete event logs,\u201d Lecture Notes in Computer Science, vol.8489, pp.311-329, 2014. 10.1007\/978-3-642-38697-8_17","DOI":"10.1007\/978-3-642-38697-8_17"},{"key":"5","doi-asserted-by":"publisher","unstructured":"[5] E. Curry, J. O'Donnell, E. Corry, S. Hasan, M. Keane, and S. O'Riain, \u201cLinking building data in the cloud: Integrating cross-domain building data using linked data,\u201d Adv Eng Informatics, vol.27, no.2, pp.206-219, 2013. 10.1016\/j.aei.2012.10.003","DOI":"10.1016\/j.aei.2012.10.003"},{"key":"6","unstructured":"[6] D. Sebastian, S. Matthias, M. Martin, and B. Stephan, \u201cConformance checking: A state-of-the-art literature review,\u201d CoRR, 2020."},{"key":"7","doi-asserted-by":"crossref","unstructured":"[7] W.M. van der Aalst, Process Mining: Data Science in Action, Springer, Berlin, 2016. 10.1007\/978-3-662-49851-4_1","DOI":"10.1007\/978-3-662-49851-4"},{"key":"8","doi-asserted-by":"crossref","unstructured":"[8] D. Taibi and K. Syst\u00e4, \u201cFrom monolithic systems to microservices: a decomposition framework based on process mining,\u201d CLOSER, pp.153-164, 2019. 10.5220\/0007755901530164","DOI":"10.5220\/0007755901530164"},{"key":"9","doi-asserted-by":"publisher","unstructured":"[9] R. P\u00e9rez-Castillo, M. Fern\u00e1ndez-Ropero, and M. Piattini, \u201cBusiness process model refactoring applying IBUPROFEN. An industrial evaluation,\u201d J Syst Softw, vol.147, pp.86-103, 2019. 10.1016\/j.jss.2018.10.012","DOI":"10.1016\/j.jss.2018.10.012"},{"key":"10","unstructured":"[10] W.M. van der Aalst and H. Verbeek, \u201cProcess mining in web services: The WebSphere case,\u201d IEEE Data Eng. Bull., vol.31, no.3, pp.45-48, 2008."},{"key":"11","doi-asserted-by":"crossref","unstructured":"[11] R.P.J.C. Bose and W.M. van der Aalst, \u201cContext aware trace clustering: Towards improving process mining results,\u201d SDM, pp.109-20, 2009. 10.1137\/1.9781611972795.35","DOI":"10.1137\/1.9781611972795.35"},{"key":"12","doi-asserted-by":"crossref","unstructured":"[12] M. Song, C.W. G\u00fcnther, and W.M.P.V.D. Aalst, \u201cTrace Clustering in Process Mining,\u201d BPM, vol.17, no.4, pp.109-120, 2008. 10.1007\/978-3-642-00328-8_11","DOI":"10.1007\/978-3-642-00328-8_11"},{"key":"13","doi-asserted-by":"crossref","unstructured":"[13] R.P.J.C. Bose and W.M.P.V.D. Aalst, \u201cTrace Clustering Based on Conserved Patterns: Towards Achieving Better Process Models,\u201d BPM, pp.170-181, 2010. 10.1007\/978-3-642-12186-9_16","DOI":"10.1007\/978-3-642-12186-9_16"},{"key":"14","unstructured":"[14] B. Hompes, J. Buijs, W.M. van der Aalst, P. Dixit, and J. Buurman, \u201cDiscovering deviating cases and process variants using trace clustering,\u201d Proc. 27th Benelux Conference on Artificial Intelligence (BNAIC), pp.5-6, Nov. 2015."},{"key":"15","doi-asserted-by":"crossref","unstructured":"[15] M. Boltenhagen, T. Chatain, and J. Carmona, \u201cGeneralized alignment-based trace clustering of process behavior,\u201d Petri Nets, pp.237-257, 2019. 10.1007\/978-3-030-21571-2_14","DOI":"10.1007\/978-3-030-21571-2_14"},{"key":"16","doi-asserted-by":"crossref","unstructured":"[16] L. Yang, G. Kang, W. Cai, and Q. Zhou, \u201cAn effective process mining approach against diverse logs based on case classification,\u201d 2015 IEEE International Congress on Big Data, IEEE, pp.351-358, 2015. 10.1109\/bigdatacongress.2015.59","DOI":"10.1109\/BigDataCongress.2015.59"},{"key":"17","doi-asserted-by":"publisher","unstructured":"[17] J.C. Buijs, B.F. van Dongen, and W.M. van der Aalst, \u201cQuality dimensions in process discovery: The importance of fitness, precision, generalization and simplicity,\u201d Int J Coop Inf Syst, vol.23, no.01, p.1440001, 2014. 10.1142\/s0218843014400012","DOI":"10.1142\/S0218843014400012"},{"key":"18","doi-asserted-by":"crossref","unstructured":"[18] B.F. van Dongen, J. Carmona, and T. Chatain, \u201cA unified approach for measuring precision and generalization based on anti-alignments,\u201d BPM, 2016. 10.1007\/978-3-319-45348-4_3","DOI":"10.1007\/978-3-319-45348-4_3"},{"key":"19","doi-asserted-by":"publisher","unstructured":"[19] D. Fahland and W.M. van der Aalst, \u201cSimplifying discovered process models in a controlled manner,\u201d Inf Syst, vol.38, no.4, pp.585-605, 2013. 10.1016\/j.is.2012.07.004","DOI":"10.1016\/j.is.2012.07.004"},{"key":"20","doi-asserted-by":"publisher","unstructured":"[20] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. Dongen, and W.M. van der Aalst, \u201cMeasuring precision of modeled behavior,\u201d Inf Syst E Bus Manag, vol.1, no.13, pp.37-67, 2015. 10.1007\/s10257-014-0234-7","DOI":"10.1007\/s10257-014-0234-7"},{"key":"21","doi-asserted-by":"crossref","unstructured":"[21] S.Z. Van, V.B.F. Dongen, W.M. van der Aalst, and H.Verbeek, \u201cDiscovering workflow nets using integer linear programming,\u201d Computing, vol.100, no.5, pp.375-383, 2018.","DOI":"10.1007\/s00607-017-0582-5"},{"key":"22","unstructured":"[22] A. Burattin, \u201cPLG2: Multi-perspective process randomization with online and offline simulations,\u201d BPM, pp.1-6, 2016."},{"key":"23","doi-asserted-by":"crossref","unstructured":"[23] W.M. van der Aalst, A. Adriansyah, A.K.A. de Medeiros, F. Arcieri, T. Baier, T. Blickle T, J.C. Bose, P. van den Brand, R. Brandtjen, and J. Buijs, \u201cProcess mining manifesto,\u201d Inf. Syst., vol.37, no.3, pp.288-290, 2012.","DOI":"10.1016\/j.is.2011.10.006"},{"key":"24","doi-asserted-by":"publisher","unstructured":"[24] L. Wen, W.M. van der Aalst, J. Wang, and J. Sun, \u201cMining process models with non-free-choice constructs,\u201d Data Min Knowl Discov, vol.15, no.2, pp.145-180, 2007. 10.1007\/s10618-007-0065-y","DOI":"10.1007\/s10618-007-0065-y"},{"key":"25","doi-asserted-by":"publisher","unstructured":"[25] S. De Cnudde, J. Claes, and G. Poels, \u201cImproving the quality of the Heuristics Miner in ProM 6.2,\u201d Expert Syst Appl, vol.41, no.17, 2014. 10.1016\/j.eswa.2014.05.055","DOI":"10.1016\/j.eswa.2014.05.055"},{"key":"26","doi-asserted-by":"publisher","unstructured":"[26] S.J. van Zelst, B.F. van Dongen, W.M.P. van der Aalst, and H.M.W. Verbeek, \u201cDiscovering workflow nets using integer linear programming,\u201d Computing, pp.529-556, 2018. 10.1007\/s00607-017-0582-5","DOI":"10.1007\/s00607-017-0582-5"},{"key":"27","unstructured":"[27] M. de Leoni and F. Mannhardt, \u201cRoad traffic fine management process,\u201d 4TU ResearchData Dataset, https:\/\/www.narcis.nl\/dataset\/Language\/EN\/uquery\/management\/id\/12\/RecordID\/uuid:270fd440-1057-4fb9-89a9-b699b47990f5, 2021."},{"key":"28","unstructured":"[28] G. Munoz, JdlF, R. (Rene), \u201cSep\u00falveda, M. (Marcos); Fuentes, R. (Ricardo),\u201d Conformance Checking Challenge 2019 (CCC19). 4TU ResearchData Dataset, 2021. https:\/\/doi.org\/10.4121\/uuid:c923af09-ce93-44c3-ace0-c5508cf103ad. 10.4121\/uuid:c923af09-ce93-44c3-ace0-c5508cf103ad"},{"key":"29","unstructured":"[29] J. Buijs, \u201cLoan application example, configuration 4,\u201d 4TU ResearchData Dataset, 2021. https:\/\/doi.org\/10.4121\/uuid:7489b402-bb34-4685-aa02-b002a4ddb698. 10.4121\/uuid:7489b402-bb34-4685-aa02-b002a4ddb698"},{"key":"30","unstructured":"[30] W.M. van der Aalst, \u201cTesting Representational Biases,\u201d 4TU ResearchData Dataset, 2021. https:\/\/doi.org\/10.4121\/uuid:25d6eef5-c427-42b5-ab38-5e512cca08a9. 10.4121\/uuid:25d6eef5-c427-42b5-ab38-5e512cca08a9"},{"key":"31","unstructured":"[31] W.M. van der Aalst, \u201cBenchmarking logs-parallel,\u201d 4TU ResearchData Dataset, 2021. https:\/\/doi.org\/10.4121\/uuid:1cc41f8a-3557-499a-8b34-880c1251bd6e. 10.4121\/uuid:1cc41f8a-3557-499a-8b34-880c1251bd6e"}],"container-title":["IEICE Transactions on Information and Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transinf\/E105.D\/8\/E105.D_2021EDP7190\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,8,6]],"date-time":"2022-08-06T03:34:59Z","timestamp":1659756899000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transinf\/E105.D\/8\/E105.D_2021EDP7190\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,8,1]]},"references-count":31,"journal-issue":{"issue":"8","published-print":{"date-parts":[[2022]]}},"URL":"https:\/\/doi.org\/10.1587\/transinf.2021edp7190","relation":{},"ISSN":["0916-8532","1745-1361"],"issn-type":[{"value":"0916-8532","type":"print"},{"value":"1745-1361","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,8,1]]},"article-number":"2021EDP7190"}}