{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,25]],"date-time":"2024-05-25T04:34:21Z","timestamp":1716611661769},"reference-count":51,"publisher":"Institute of Electronics, Information and Communications Engineers (IEICE)","issue":"5","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEICE Trans. Inf. & Syst."],"published-print":{"date-parts":[[2022,5,1]]},"DOI":"10.1587\/transinf.2021edp7184","type":"journal-article","created":{"date-parts":[[2022,4,30]],"date-time":"2022-04-30T22:17:21Z","timestamp":1651357041000},"page":"1024-1038","source":"Crossref","is-referenced-by-count":2,"title":["SVM Based Intrusion Detection Method with Nonlinear Scaling and Feature Selection"],"prefix":"10.1587","volume":"E105.D","author":[{"given":"Fei","family":"ZHANG","sequence":"first","affiliation":[{"name":"Institute of Aeronautics and Astronautics, Northwestern Polytechnic University"}]},{"given":"Peining","family":"ZHEN","sequence":"additional","affiliation":[{"name":"Department of Micro\/Nano-electronics, Shanghai Jiao Tong University"}]},{"given":"Dishan","family":"JING","sequence":"additional","affiliation":[{"name":"Department of Micro\/Nano-electronics, Shanghai Jiao Tong University"}]},{"given":"Xiaotang","family":"TANG","sequence":"additional","affiliation":[{"name":"Department of Micro\/Nano-electronics, Shanghai Jiao Tong University"}]},{"given":"Hai-Bao","family":"CHEN","sequence":"additional","affiliation":[{"name":"Department of Micro\/Nano-electronics, Shanghai Jiao Tong University"}]},{"given":"Jie","family":"YAN","sequence":"additional","affiliation":[{"name":"Institute of Aeronautics and Astronautics, Northwestern Polytechnic University"}]}],"member":"532","reference":[{"key":"1","doi-asserted-by":"publisher","unstructured":"[1] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, \u201cA survey on internet of things: Architecture, enabling technologies, security and privacy, and applications,\u201d IEEE Internet of Things Journal, vol.4, no.5, pp.1125-1142, Oct 2017. 10.1109\/jiot.2017.2683200","DOI":"10.1109\/JIOT.2017.2683200"},{"key":"2","doi-asserted-by":"publisher","unstructured":"[2] P. Sangkatsanee, N. Wattanapongsakorn, and C. Charnsripinyo, \u201cPractical real-time intrusion detection using machine learning approaches,\u201d Computer Communications, vol.34, no.18, pp.2227-2235, 2011. 10.1016\/j.comcom.2011.07.001","DOI":"10.1016\/j.comcom.2011.07.001"},{"key":"3","doi-asserted-by":"crossref","unstructured":"[3] M. Tavallaee, E. Bagheri, W. Lu, and A.A. Ghorbani, \u201cA detailed analysis of the kdd cup 99 data set,\u201d IEEE International Conference on Computational Intelligence for Security and Defense Applications, pp.53-58, 2009.","DOI":"10.1109\/CISDA.2009.5356528"},{"key":"4","unstructured":"[4] K. Kendall, \u201cA database of computer attacks for the evaluation of intrusion detection systems,\u201d Darpa Off-line Intrusion Detection Evaluation, Darpa Information Survivability Conference & Exposition, pp.12-26, 1999."},{"key":"5","doi-asserted-by":"crossref","unstructured":"[5] P. Bergmann, M. Fauser, D. Sattlegger, and C. Steger, \u201cMvtec ad \u2014 a comprehensive real-world dataset for unsupervised anomaly detection,\u201d Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, pp.9592-9600, 2019. 10.1109\/cvpr.2019.00982","DOI":"10.1109\/CVPR.2019.00982"},{"key":"6","doi-asserted-by":"publisher","unstructured":"[6] M. Ahmed, A.N. Mahmood, and J. Hu, \u201cA survey of network anomaly detection techniques,\u201d Journal of Network and Computer Applications, vol.60, pp.19-31, 2016. 10.1016\/j.jnca.2015.11.016","DOI":"10.1016\/j.jnca.2015.11.016"},{"key":"7","unstructured":"[7] Y.B. Bhavsar and K.C. Waghmare, \u201cIntrusion detection system using data mining technique: Support vector machine,\u201d International Journal of Emerging Technology and Advanced Engineering, 2013."},{"key":"8","doi-asserted-by":"publisher","unstructured":"[8] C.-F. Tsai, Y.-F. Hsu, C.-Y. Lin, and W.-Y. Lin, \u201cIntrusion detection by machine learning: A review,\u201d Expert Systems with Applications, vol.36, no.10, pp.11994-12000, 2009. 10.1016\/j.eswa.2009.05.029","DOI":"10.1016\/j.eswa.2009.05.029"},{"key":"9","doi-asserted-by":"publisher","unstructured":"[9] V. Bol\u00f3n-Canedo, N. S\u00e1nchez-Maro\u00f1o, and A. Alonso-Betanzos, \u201cFeature selection and classification in multiple class datasets: An application to kdd cup 99 dataset,\u201d Expert Systems with Applications, vol.38, no.5, pp.5947-5957, 2011. 10.1016\/j.eswa.2010.11.028","DOI":"10.1016\/j.eswa.2010.11.028"},{"key":"10","doi-asserted-by":"publisher","unstructured":"[10] E.M. Karabulut, S.A. \u00f6zel, and T. \u0130brik\u00e7i, \u201cA comparative study on the effect of feature selection on classification accuracy,\u201d Procedia Technology, vol.1, no.10, pp.323-327, 2012. 10.1016\/j.protcy.2012.02.068","DOI":"10.1016\/j.protcy.2012.02.068"},{"key":"11","unstructured":"[11] M. Tan and Q. Le, \u201cEfficientnet: Rethinking model scaling for convolutional neural networks,\u201d International Conference on Machine Learning, pp.6105-6114, 2019."},{"key":"12","unstructured":"[12] S. Doraisamy, S. Golzari, N.M. Norowi, M.N. Sulaiman, and N.I. Udzir, \u201cA study on feature selection and classification techniques for automatic genre classification of traditional malay music,\u201d Ismir 2008, International Conference on Music Information Retrieval, Drexel University, Philadelphia, PA, USA, pp.331-336, Sept. 2008."},{"key":"13","doi-asserted-by":"publisher","unstructured":"[13] A. Arauzo-Azofra, J.L. Aznarte, and J.M. Ben\u00edtez, \u201cEmpirical study of feature selection methods based on individual feature evaluation for classification problems,\u201d Expert Systems with Applications, vol.38, no.7, pp.8170-8177, 2011. 10.1016\/j.eswa.2010.12.160","DOI":"10.1016\/j.eswa.2010.12.160"},{"key":"14","doi-asserted-by":"crossref","unstructured":"[14] N. Moustafa and J. Slay, \u201cUnsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set),\u201d Military Communications and Information Systems Conference, pp.1-6, 2015. 10.1109\/milcis.2015.7348942","DOI":"10.1109\/MilCIS.2015.7348942"},{"key":"15","doi-asserted-by":"publisher","unstructured":"[15] M. Injadat, A. Moubayed, A.B. Nassif, and A. Shami, \u201cMulti-stage optimized machine learning framework for network intrusion detection,\u201d IEEE Transactions on Network and Service Management, vol.18, no.2, pp.1803-1816, 2021. 10.1109\/tnsm.2020.3014929","DOI":"10.1109\/TNSM.2020.3014929"},{"key":"16","doi-asserted-by":"publisher","unstructured":"[16] H. Yao, D. Fu, P. Zhang, M. Li, and Y. Liu, \u201cMsml: A novel multilevel semi-supervised machine learning framework for intrusion detection system,\u201d IEEE Internet of Things Journal, vol.6, no.2, pp.1949-1959, 2018. 10.1109\/jiot.2018.2873125","DOI":"10.1109\/JIOT.2018.2873125"},{"key":"17","unstructured":"[17] D.T.B. L.M. Ibrahim and M.S. Mahamod, \u201cA comparison study for intrusion database (KDD99, NSL-KDD) based on self organization map (SOM) artificial neural network,\u201d Journal of Engineering Science & Technology, vol.8, no.1, pp.107-119, 2013."},{"key":"18","doi-asserted-by":"publisher","unstructured":"[18] K. Bajaj and A. Arora, \u201cImproving the intrusion detection using discriminative machine learning approach and improve the time complexity by data mining feature selection methods,\u201d International Journal of Computer Applications, vol.76, no.1, pp.5-11, 2013. 10.5120\/13209-0587","DOI":"10.5120\/13209-0587"},{"key":"19","doi-asserted-by":"crossref","unstructured":"[19] A.R. Yusof, N.I. Udzir, A. Selamat, H. Hamdan, and M.T. Abdullah, \u201cAdaptive feature selection for denial of services (dos) attack,\u201d Application, Information & Network Security, 2018. 10.1109\/ains.2017.8270429","DOI":"10.1109\/AINS.2017.8270429"},{"key":"20","doi-asserted-by":"crossref","unstructured":"[20] B. Ingre and A. Yadav, \u201cPerformance analysis of NSL-KDD dataset using ANN,\u201d 2015 International Conference on Signal Processing and Communication Engineering Systems, pp.92-96, Jan. 2015. 10.1109\/spaces.2015.7058223","DOI":"10.1109\/SPACES.2015.7058223"},{"key":"21","unstructured":"[21] A. VishwaVidyapeetham, \u201cEffective threshold defence against dos attack on sdn controller,\u201d International Journal of Pure and Applied Mathematics, vol.119, no.10, pp.691-698, 2018."},{"key":"22","doi-asserted-by":"publisher","unstructured":"[22] M. Latah and L. Toker, \u201cA novel intelligent approach for detecting dos flooding attacks in software-defined networks,\u201d International Journal of Advances in Intelligent Informatics, vol.4, no.1, pp.11-20, 2018. 10.26555\/ijain.v4i1.138","DOI":"10.26555\/ijain.v4i1.138"},{"key":"23","doi-asserted-by":"publisher","unstructured":"[23] H.-J. Liao, C.-H.R. Lin, Y.-C. Lin, and K.-Y. Tung, \u201cIntrusion detection system: A comprehensive review,\u201d Journal of Network & Computer Applications, vol.36, no.1, pp.16-24, 2013. 10.1016\/j.jnca.2012.09.004","DOI":"10.1016\/j.jnca.2012.09.004"},{"key":"24","unstructured":"[24] S. Paliwal and R. Gupta, \u201cDenial-of-service, probing & remote to user (r2l) attack detection using genetic algorithm,\u201d International Journal of Computer Applications, vol.60, no.19, pp.57-62, Dec. 2012."},{"key":"25","doi-asserted-by":"publisher","unstructured":"[25] J.-Y. Li and C. Shao, \u201cDetection of denial of service and network probing attacks based on principal component analysis,\u201d Journal of Computer Applications, vol.32, no.6, pp.1620-1619, 2012. 10.3724\/sp.j.1087.2012.01620","DOI":"10.3724\/SP.J.1087.2012.01620"},{"key":"26","doi-asserted-by":"publisher","unstructured":"[26] M. Deng, K. Nie, W. Zhu, and C. Zhang, \u201cThe detection of udpstorm attacks based on model checking linear temporal logic,\u201d Automatic Control & Computer Sciences, vol.51, no.3, pp.174-179, 2017. 10.3103\/s0146411617030026","DOI":"10.3103\/S0146411617030026"},{"key":"27","doi-asserted-by":"publisher","unstructured":"[27] A. Sundaram, \u201cAn introduction to intrusion detection,\u201d Crossroads, vol.2, no.4, pp.3-7, 1996. 10.1145\/332159.332161","DOI":"10.1145\/332159.332161"},{"key":"28","doi-asserted-by":"crossref","unstructured":"[28] F. Sabahi and A. Movaghar, \u201cIntrusion detection: A survey,\u201d International Conference on Systems & Networks Communications, 2008. 10.1109\/icsnc.2008.44","DOI":"10.1109\/ICSNC.2008.44"},{"key":"29","doi-asserted-by":"publisher","unstructured":"[29] H. Debar, M. Dacier, and A. Wespi, \u201cTowards a taxonomy of intrusion-detection systems,\u201d Computer Networks, vol.31, no.8, pp.805-822, 1998. 10.1016\/s1389-1286(98)00017-6","DOI":"10.1016\/S1389-1286(98)00017-6"},{"key":"30","doi-asserted-by":"crossref","unstructured":"[30] X. Tang, S.X.-D Tan, and H.-B. Chen, \u201cSvm based intrusion detection using nonlinear scaling scheme,\u201d 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp.1-4, Oct. 2018. 10.1109\/icsict.2018.8565736","DOI":"10.1109\/ICSICT.2018.8565736"},{"key":"31","doi-asserted-by":"publisher","unstructured":"[31] C. Cortes and V. Vapnik, \u201cSupport-vector networks,\u201d Mach. Learn., vol.20, no.3, pp.273-297, Sept. 1995. 10.1007\/bf00994018","DOI":"10.1007\/BF00994018"},{"key":"32","unstructured":"[33] D.M.W. Powers, \u201cEvaluation: From precision, recall and F-Factor to ROC, informedness, markedness & correlation,\u201d Journal of Machine Learning Technologies, vol.2, pp.2229-3981, 2011."},{"key":"33","doi-asserted-by":"crossref","unstructured":"[34] X. Zeng, Q. Wang, C. Zhang, and H. Cai, \u201cFeature selection based on relieff and pca for underwater sound classification,\u201d International Conference on Computer Science and Network Technology, pp.442-445, 2014. 10.1109\/iccsnt.2013.6967149","DOI":"10.1109\/ICCSNT.2013.6967149"},{"key":"34","doi-asserted-by":"crossref","unstructured":"[35] Y. Luo, S. Xiong, and S. Wang, \u201cA pca based unsupervised feature selection algorithm,\u201d 2008 Second International Conference on Genetic and Evolutionary Computing, pp.299-302, Sept. 2008. 10.1109\/wgec.2008.109","DOI":"10.1109\/WGEC.2008.109"},{"key":"35","unstructured":"[36] S. Lakhina, S. Joseph, and B. Verma, \u201cFeature reduction using principal component analysis for effective anomaly-based intrusion detection on nsl-kdd,\u201d International Journal of Engineering Science and Technology, vol.2, no.6, pp.1790-1799, 2010."},{"key":"36","doi-asserted-by":"crossref","unstructured":"[37] S. Almotairi, A. Clark, G. Mohay, and J. Zimmermann, \u201cA technique for detecting new attacks in low-interaction honeypot traffic,\u201d Fourth International Conference on Internet Monitoring & Protection, 2009. 10.1109\/icimp.2009.9","DOI":"10.1109\/ICIMP.2009.9"},{"key":"37","doi-asserted-by":"publisher","unstructured":"[38] C. Buratti, A. Stajkic, G. Gardasevic, S. Milardo, M.D. Abrignani, S. Mijovic, G. Morabito, and R. Verdone, \u201cTesting protocols for the internet of things on the euwin platform,\u201d IEEE Internet of Things Journal, vol.3, no.1, pp.124-133, Feb. 2016. 10.1109\/jiot.2015.2462030","DOI":"10.1109\/JIOT.2015.2462030"},{"key":"38","unstructured":"[39] \u201cKdd-cup-99 task description,\u201d http:\/\/kdd.ics.uci.edu\/databases\/kddcup99\/task.html, accessed March 14, 2017."},{"key":"39","doi-asserted-by":"publisher","unstructured":"[40] A.C. Snoeren, C. Partridge, L.A. Sanchez, C.E. Jones, F. Tchakountio, B. Schwartz, S.T. Kent, and W.T. Strayer, \u201cSingle-packet ip traceback,\u201d IEEE\/ACM Transactions on Networking, vol.10, no.6, pp.721-734, 2002. 10.1109\/tnet.2002.804827","DOI":"10.1109\/TNET.2002.804827"},{"key":"40","doi-asserted-by":"publisher","unstructured":"[41] D.D. Clark, V. Jacobson, J. Romkey, and H. Salwen, \u201cAn analysis of tcp processing overhead,\u201d IEEE Communications Magazine, vol.40, no.5, pp.23-29, 1989. 10.1109\/35.29545","DOI":"10.1109\/35.29545"},{"key":"41","doi-asserted-by":"publisher","unstructured":"[42] N.L. Ewaldarostegui and G. Fairhurst, \u201cIp\/udp header suppression for signaling in an all-ip dvb transmission system,\u201d IEEE Transactions on Broadcasting, vol.58, no.2, pp.301-304, 2012. 10.1109\/tbc.2012.2189332","DOI":"10.1109\/TBC.2012.2189332"},{"key":"42","doi-asserted-by":"crossref","unstructured":"[43] D. Malone and M.J. Luckie, \u201cAnalysis of icmp quotations,\u201d pp.228-232, 2007. 10.1007\/978-3-540-71617-4_24","DOI":"10.1007\/978-3-540-71617-4_24"},{"key":"43","doi-asserted-by":"publisher","unstructured":"[44] C.-C. Chang and C.-J. Lin, \u201cLIBSVM: A library for support vector machines,\u201d ACM Transactions on Intelligent Systems and Technology, vol.2, pp.27:1-27:27, 2011. 10.1145\/1961189.1961199","DOI":"10.1145\/1961189.1961199"},{"key":"44","unstructured":"[45] \u201cTcpdump & libpcap,\u201d https:\/\/www.tcpdump.org\/, accessed April 4, 2018."},{"key":"45","doi-asserted-by":"publisher","unstructured":"[46] N. Moustafa and J. Slay, \u201cThe evaluation of network anomaly detection systems: Statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set,\u201d Information Security Journal: A Global Perspective, vol.25, no.1-3, pp.18-31, 2016. 10.1080\/19393555.2015.1125974","DOI":"10.1080\/19393555.2015.1125974"},{"key":"46","doi-asserted-by":"crossref","unstructured":"[47] T. Janarthanan and S. Zargari, \u201cFeature selection in UNSW-NB15 and KDDCUP'99 datasets,\u201d IEEE International Symposium on Industrial Electronics, pp.1881-1886, 2017. 10.1109\/isie.2017.8001537","DOI":"10.1109\/ISIE.2017.8001537"},{"key":"47","unstructured":"[48] M. Nawir, A. Amir, N. Yaakob, and O.B. Lynn, \u201cMulti-classification of UNSW-NB15 dataset for network anomaly detection system.,\u201d Journal of Theoretical & Applied Information Technology, vol.96, no.15, 2018."},{"key":"48","doi-asserted-by":"crossref","unstructured":"[49] S. Potluri, S. Ahmed, and C. Diedrich, \u201cConvolutional neural networks for multi-class intrusion detection system,\u201d International Conference on Mining Intelligence and Knowledge Exploration, pp.225-238, 2018. 10.1007\/978-3-030-05918-7_20","DOI":"10.1007\/978-3-030-05918-7_20"},{"key":"49","unstructured":"[50] J. Han, J. Pei, and M. Kamber, Data Mining: Concepts and Techniques, Elsevier, 2011."},{"key":"50","unstructured":"[51] M.A. Hall and L.A. Smith, \u201cPractical feature subset selection for machine learning,\u201d Proceedings of the 21st Australasian Computer Science Conference, pp.181-191, 1998."},{"key":"51","doi-asserted-by":"crossref","unstructured":"[52] J.M. Bland and D.G. Altman, \u201cCalculating correlation coefficients with repeated observations: part 2 \u2014 correlation between subjects,\u201d BMJ, vol.310, no.6980, p.633, 1995. 10.1136\/bmj.310.6980.633","DOI":"10.1136\/bmj.310.6980.633"}],"container-title":["IEICE Transactions on Information and Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transinf\/E105.D\/5\/E105.D_2021EDP7184\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,7]],"date-time":"2022-05-07T04:43:44Z","timestamp":1651898624000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transinf\/E105.D\/5\/E105.D_2021EDP7184\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,5,1]]},"references-count":51,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2022]]}},"URL":"https:\/\/doi.org\/10.1587\/transinf.2021edp7184","relation":{},"ISSN":["0916-8532","1745-1361"],"issn-type":[{"value":"0916-8532","type":"print"},{"value":"1745-1361","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,5,1]]},"article-number":"2021EDP7184"}}