{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,12]],"date-time":"2024-01-12T03:02:55Z","timestamp":1705028575891},"reference-count":41,"publisher":"Institute of Electronics, Information and Communications Engineers (IEICE)","issue":"9","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEICE Trans. Inf. & Syst."],"published-print":{"date-parts":[[2019,9,1]]},"DOI":"10.1587\/transinf.2018edp7390","type":"journal-article","created":{"date-parts":[[2019,8,31]],"date-time":"2019-08-31T18:11:10Z","timestamp":1567275070000},"page":"1761-1772","source":"Crossref","is-referenced-by-count":2,"title":["Automatic Stop Word Generation for Mining Software Artifact Using Topic Model with Pointwise Mutual Information"],"prefix":"10.1587","volume":"E102.D","author":[{"given":"Jung-Been","family":"LEE","sequence":"first","affiliation":[{"name":"Korea University"}]},{"given":"Taek","family":"LEE","sequence":"additional","affiliation":[{"name":"Sungshin University"}]},{"given":"Hoh Peter","family":"IN","sequence":"additional","affiliation":[{"name":"Korea University"}]}],"member":"532","reference":[{"key":"1","doi-asserted-by":"crossref","unstructured":"[1] S.W. Thomas, \u201cMining software repositories using topic models,\u201d Proc. 33rd International Conference on Software Engineering, ACM, 2011.","DOI":"10.1145\/1985793.1986020"},{"key":"2","doi-asserted-by":"crossref","unstructured":"[2] A.E. Hassan, \u201cThe road ahead for mining software repositories,\u201d Frontiers of Software Maintenance, FoSM 2008, IEEE, 2008.","DOI":"10.1109\/FOSM.2008.4659248"},{"key":"3","doi-asserted-by":"publisher","unstructured":"[3] L.R. Biggers, C. Bocovich, R. Capshaw, B.P. Eddy, L.H.Etzkorn, and N.A. Kraft, \u201cConfiguring latent Dirichlet allocation based feature location,\u201d Empirical Software Engineering, vol.19, no.3, pp.465-500, 2014. 10.1007\/s10664-012-9224-x","DOI":"10.1007\/s10664-012-9224-x"},{"key":"4","doi-asserted-by":"publisher","unstructured":"[4] S.K. Lukins, N.A. Kraft, and L.H. Etzkorn, \u201cBug localization using latent Dirichlet allocation,\u201d Information and Software Technology, vol.52, no.9, pp.972-990, 2010. 10.1016\/j.infsof.2010.04.002","DOI":"10.1016\/j.infsof.2010.04.002"},{"key":"5","doi-asserted-by":"crossref","unstructured":"[5] A.T. Nguyen, et al., \u201cA topic-based approach for narrowing the search space of buggy files from a bug report,\u201d 2011 26th IEEE\/ACM International Conference on Automated Software Engineering (ASE), IEEE, 2011.","DOI":"10.1109\/ASE.2011.6100062"},{"key":"6","doi-asserted-by":"crossref","unstructured":"[6] E. Linstead, et al., \u201cMining concepts from code with probabilistic topic models,\u201d Proc. Twenty-second IEEE\/ACM International Conference on Automated Software Engineering, ACM, 2007.","DOI":"10.1145\/1321631.1321709"},{"key":"7","doi-asserted-by":"crossref","unstructured":"[7] G. Maskeri, S. Sarkar, and K. Heafield, \u201cMining business topics in source code using latent Dirichlet allocation,\u201d Proc. 1st India Software Engineering Conference, ACM, 2008.","DOI":"10.1145\/1342211.1342234"},{"key":"8","doi-asserted-by":"crossref","unstructured":"[8] T. Savage, et al., \u201cTopic XP: Exploring topics in source code using latent Dirichlet allocation,\u201d 2010 IEEE International Conference on Software Maintenance (ICSM), IEEE, 2010.","DOI":"10.1109\/ICSM.2010.5609654"},{"key":"9","doi-asserted-by":"crossref","unstructured":"[9] S. Deerwester, S.T. Dumais, G.W. Furnas, T.K. Landauer, and R. Harshman, \u201cIndexing by latent semantic analysis,\u201d Journal of the American Soc. for Inf. Science, vol.41, pp.391-407, 1990.","DOI":"10.1002\/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9"},{"key":"10","unstructured":"[10] D.M. Blei, A.Y. Ng, and M.I. Jordan, \u201cLatent Dirichlet allocation,\u201d J. Mach. Earn. Res., vol.3, pp.993-1022, 2003."},{"key":"11","unstructured":"[11] V.P. Baradad and A.M. Mugabushaka, \u201cCorpus Specific Stop Words to Improve the Textual Analysis in Scientometrics,\u201d ISSI, 2015."},{"key":"12","doi-asserted-by":"crossref","unstructured":"[12] S. Rose, et al., \u201cAutomatic keyword extraction from individual documents,\u201d Text Mining, pp.1-20, 2010.","DOI":"10.1002\/9780470689646.ch1"},{"key":"13","unstructured":"[13] D. Newman, S. Karimi, and C. Lawrence, \u201cExternal evaluation of topic models,\u201d ADCS, 2009."},{"key":"14","unstructured":"[14] D. Newman, et al., \u201cAutomatic evaluation of topic coherence,\u201d Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Association for Computational Linguistics, 2010."},{"key":"15","unstructured":"[15] M. Rosen-Zvi, et al., \u201cThe author-topic model for authors and documents,\u201d Proc. 20th Conference on Uncertainty in Artificial Intelligence, AUAI Press, 2004."},{"key":"16","doi-asserted-by":"crossref","unstructured":"[16] H.M. Wallach, et al., \u201cEvaluation methods for topic models,\u201d Proc. 26th Annual International Conference on Machine Learning, ACM, 2009.","DOI":"10.1145\/1553374.1553515"},{"key":"17","doi-asserted-by":"crossref","unstructured":"[17] H.P. Luhn, \u201cThe automatic creation of literature abstracts,\u201d IBM Journal of Research and Development, vol.2, no.2, pp.159-165, 1958.","DOI":"10.1147\/rd.22.0159"},{"key":"18","doi-asserted-by":"publisher","unstructured":"[18] G. Salton and C.S. Yang, \u201cOn the specification of term values in automatic indexing,\u201d Journal of documentation, vol.29, no.4, no.351-372, 1973. 10.1108\/eb026562","DOI":"10.1108\/eb026562"},{"key":"19","doi-asserted-by":"crossref","unstructured":"[19] M. Jungiewicz and M. \u0141opuszy\u0144ski, \u201cUnsupervised keyword extraction from Polish legal texts,\u201d International Conference on Natural Language Processing, Springer International Publishing, 2014.","DOI":"10.1007\/978-3-319-10888-9_7"},{"key":"20","doi-asserted-by":"publisher","unstructured":"[20] K.W. Church and W.A. Gale, \u201cPoisson mixtures,\u201d Natural Language Engineering, vol.1, no.2, pp.163-190, 1995. 10.1017\/s1351324900000139","DOI":"10.1017\/S1351324900000139"},{"key":"21","unstructured":"[21] M. Steyvers and T. Griffiths, \u201cProbabilistic topic models,\u201d Handbook of latent semantic analysis, vol.427, pp.424-440, 2007."},{"key":"22","unstructured":"[22] C.D. Manning and H. Sch\u00fctze, Foundations of Statistical Natural Language Processing, MIT Press, Cambridge, 1999."},{"key":"23","unstructured":"[23] M. Masoud and M.S. Kamel, \u201cAutomatic extraction of domain-specific stopwords from labeled documents,\u201d European Conference on Information Retrieval, Springer Berlin Heidelberg, 2008."},{"key":"24","doi-asserted-by":"crossref","unstructured":"[24] S. Kim and M.D. Ernst, \u201cWhich warnings should I fix first?,\u201d Proc. 6th Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ACM, 2007.","DOI":"10.1145\/1287624.1287633"},{"key":"25","doi-asserted-by":"crossref","unstructured":"[25] T.L. Griffiths and M. Steyvers, \u201cFinding scientific topics,\u201d Proc. National academy of Sciences, vol.101, suppl 1, pp.5228-5235, 2004. 10.1073\/pnas.0307752101","DOI":"10.1073\/pnas.0307752101"},{"key":"26","doi-asserted-by":"publisher","unstructured":"[26] P. Pecina, \u201cLexical association measures and collocation extraction,\u201d Language resources and evaluation, vol.44, no.1-2, pp.137-158, 2010. 10.1007\/s10579-009-9101-4","DOI":"10.1007\/s10579-009-9101-4"},{"key":"27","doi-asserted-by":"crossref","unstructured":"[27] C. Fox, \u201cA stoplist for general text,\u201d ACM SIGIR Forum, vol.24, no.1-2, ACM, 1989.","DOI":"10.1145\/378881.378888"},{"key":"28","doi-asserted-by":"crossref","unstructured":"[28] R. Arun, et al., \u201cOn finding the natural number of topics with latent Dirichlet allocation: Some observations,\u201d Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.391-402, Springer, Berlin, Heidelberg, 2010.","DOI":"10.1007\/978-3-642-13657-3_43"},{"key":"29","doi-asserted-by":"publisher","unstructured":"[29] J. Cao, T. Xia, J. Li, Y. Zhang, and S. Tang, \u201cA density-based method for adaptive LDA model selection,\u201d Neurocomputing, vol.72, no.7, pp.1775-1781, 2009. 10.1016\/j.neucom.2008.06.011","DOI":"10.1016\/j.neucom.2008.06.011"},{"key":"30","doi-asserted-by":"publisher","unstructured":"[30] R. Deveaud, E. Sanjuan, and P. Bellot, \u201cAccurate and effective latent concept modeling for ad hoc information retrieval,\u201d Document num\u00e9rique, vol.17, no.1, pp.61-84, 2014. 10.3166\/dn.17.1.61-84","DOI":"10.3166\/dn.17.1.61-84"},{"key":"31","unstructured":"[31] J. Chang, et al., \u201cReading tea leaves: How humans interpret topic models,\u201d Advances in Neural Information Processing Systems, pp.288-296, 2009."},{"key":"32","doi-asserted-by":"publisher","unstructured":"[32] A. Kuhn, S. Ducasse, and T. G\u00edrba, \u201cSemantic clustering: Identifying topics in source code,\u201d Information and Software Technology, vol.49, no.3, pp.230-243, 2007. 10.1016\/j.infsof.2006.10.017","DOI":"10.1016\/j.infsof.2006.10.017"},{"key":"33","unstructured":"[33] D. Newman, E.V. Bonilla, and W. Buntine, \u201cImproving topic coherence with regularized topic models,\u201d Advances in Neural Information Processing Systems, 2011."},{"key":"34","unstructured":"[34] H.M. Wallach, D.M. Mimno, and A. Mccallum, \u201cRethinking LDA: Why priors matter,\u201d Advances in Neural Information Processing Systems, pp.1973-1981, 2009."},{"key":"35","unstructured":"[35] J. Scott and J. Baldridge, \u201cA recursive estimate for the predictive likelihood in a topic model,\u201d Artificial Intelligence and Statistics, pp.527-535, 2013."},{"key":"36","unstructured":"[36] G.E. Hinton and R.R. Salakhutdinov, \u201cReplicated softmax: an undirected topic model,\u201d Advances in Neural Information Processing Systems, pp.1607-1614, 2009."},{"key":"37","unstructured":"[37] A. Ritter, C. Cherry, and B. Dolan, \u201cUnsupervised modeling of twitter conversations,\u201d Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Association for Computational Linguistics, pp.172-180, 2010."},{"key":"38","doi-asserted-by":"crossref","unstructured":"[38] S.W. Thomas, \u201cMining software repositories using topic models,\u201d Proc. 33rd International Conference on Software Engineering, pp.1138-1139, ACM, 2011. 10.1145\/1985793.1986020","DOI":"10.1145\/1985793.1986020"},{"key":"39","doi-asserted-by":"publisher","unstructured":"[39] J. Uddin, R. Ghazali, M.M. Deris, R. Naseem, and H. Shah, \u201cA survey on bug prioritization,\u201d Artificial Intelligence Review, vol.47, no.2, pp.145-180, 2017. 10.1007\/s10462-016-9478-6","DOI":"10.1007\/s10462-016-9478-6"},{"key":"40","doi-asserted-by":"publisher","unstructured":"[40] S. Heckman and L. Williams, \u201cA systematic literature review of actionable alert identification techniques for automated static code analysis,\u201d Information and Software Technology, vol.53, no.4, pp.363-387, 2011. 10.1016\/j.infsof.2010.12.007","DOI":"10.1016\/j.infsof.2010.12.007"},{"key":"41","unstructured":"[41] J. Tang, et al., \u201cUnderstanding the limiting factors of topic modeling via posterior contraction analysis,\u201d International Conference on Machine Learning, pp.190-198, 2014."}],"container-title":["IEICE Transactions on Information and Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transinf\/E102.D\/9\/E102.D_2018EDP7390\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,6]],"date-time":"2019-09-06T23:27:40Z","timestamp":1567812460000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transinf\/E102.D\/9\/E102.D_2018EDP7390\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,9,1]]},"references-count":41,"journal-issue":{"issue":"9","published-print":{"date-parts":[[2019]]}},"URL":"https:\/\/doi.org\/10.1587\/transinf.2018edp7390","relation":{},"ISSN":["0916-8532","1745-1361"],"issn-type":[{"value":"0916-8532","type":"print"},{"value":"1745-1361","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,9,1]]}}}