{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T21:08:15Z","timestamp":1719868095141},"reference-count":39,"publisher":"Institute of Electronics, Information and Communications Engineers (IEICE)","issue":"4","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEICE Trans. Inf. & Syst."],"published-print":{"date-parts":[[2016]]},"DOI":"10.1587\/transinf.2015edp7278","type":"journal-article","created":{"date-parts":[[2016,3,31]],"date-time":"2016-03-31T18:20:52Z","timestamp":1459448452000},"page":"1153-1161","source":"Crossref","is-referenced-by-count":12,"title":["Combining Human Action Sensing of Wheelchair Users and Machine Learning for Autonomous Accessibility Data Collection"],"prefix":"10.1587","volume":"E99.D","author":[{"given":"Yusuke","family":"IWASAWA","sequence":"first","affiliation":[{"name":"Graduate School of Engineering Innovation, The University of Tokyo"}]},{"given":"Ikuko","family":"EGUCHI YAIRI","sequence":"additional","affiliation":[{"name":"Graduate School of Science and Engineering, Sophia University"}]},{"given":"Yutaka","family":"MATSUO","sequence":"additional","affiliation":[{"name":"Graduate School of Engineering Innovation, The University of Tokyo"}]}],"member":"532","reference":[{"key":"1","doi-asserted-by":"crossref","unstructured":"[1] Y. He, Y. Li, and S.-D. Bao, \u201cFall detection by built-in tri-accelerometer of smartphone,\u201d Biomedical and Health Informatics (BHI), 2012 IEEE-EMBS International Conference on, pp.184-187, IEEE, 2012.","DOI":"10.1109\/BHI.2012.6211540"},{"key":"2","doi-asserted-by":"crossref","unstructured":"[2] Y.-J. Hong, I.-J. Kim, S.C. Ahn, and H.-G. Kim, \u201cActivity recognition using wearable sensors for elder care,\u201d Future Generation Communication and Networking, 2008. FGCN'08. Second International Conference on, pp.302-305, IEEE, 2008.","DOI":"10.1109\/FGCN.2008.165"},{"key":"3","doi-asserted-by":"crossref","unstructured":"[3] Y.-J. Hong, I.-J. Kim, S.C. Ahn, and H.-G. Kim, \u201cMobile health monitoring system based on activity recognition using accelerometer,\u201d Simulation Modelling Practice and Theory, vol.18, no.4, pp.446-455, 2010.","DOI":"10.1016\/j.simpat.2009.09.002"},{"key":"4","doi-asserted-by":"crossref","unstructured":"[4] P. Wu, H.-K. Peng, J. Zhu, and Y. Zhang, \u201cSenscare: Semi-automatic activity summarization system for elderly care,\u201d in Mobile Computing, Applications, and Services, vol.95, pp.1-19, Springer, Berlin, Heidelberg, 2012.","DOI":"10.1007\/978-3-642-32320-1_1"},{"key":"5","doi-asserted-by":"crossref","unstructured":"[5] M.N.K. Boulos, S. Wheeler, C. Tavares, and R. Jones, \u201cHow smartphones are changing the face of mobile and participatory healthcare: an overview, with example from eCAALYX,\u201d BioMedical Engineering OnLine, vol.10, no.1, p.24, 2011.","DOI":"10.1186\/1475-925X-10-24"},{"key":"6","doi-asserted-by":"crossref","unstructured":"[6] M. Laakso, T. Sarjakoski, and L.T. Sarjakoski, \u201cImproving accessibility information in pedestrian maps and databases,\u201d Cartographica: The International Journal for Geographic Information and Geovisualization, vol.46, no.2, pp.101-108, 2011.","DOI":"10.3138\/carto.46.2.101"},{"key":"7","doi-asserted-by":"crossref","unstructured":"[7] N.D. Lane, M. Mohammod, M. Lin, X. Yang, H. Lu, S. Ali, A. Doryab, E. Berke, T. Choudhury, and A. Campbell, \u201cBewell: A smartphone application to monitor, model and promote wellbeing,\u201d 5th international ICST conference on pervasive computing technologies for healthcare, pp.23-26, Citeseer, 2011.","DOI":"10.4108\/icst.pervasivehealth.2011.246161"},{"key":"8","doi-asserted-by":"crossref","unstructured":"[8] D.W. Kang, J.S. Choi, J.W. Lee, S.C. Chung, S.J. Park, and G.R. Tack, \u201cReal-time elderly activity monitoring system based on a tri-axial accelerometer,\u201d Disability & Rehabilitation: Assistive Technology, vol.5, no.4, pp.247-253, 2010.","DOI":"10.3109\/17483101003718112"},{"key":"9","unstructured":"[9] R.S. Michalski, J.G. Carbonell, and T.M. Mitchell, Machine learning: An artificial intelligence approach, Springer Science & Business Media, 2013."},{"key":"10","unstructured":"[10] \u201cWorld health organisation: International classification of functioning, disability and health,\u201d June 2015."},{"key":"11","unstructured":"[11] E.S. Bocato, E.R. Zorzal, and V. de Almeida, \u201cAugmented reality as an accessibility tool for wheelchair users,\u201d 2012."},{"key":"12","doi-asserted-by":"crossref","unstructured":"[12] H. Matthews, L. Beale, P. Picton, and D. Briggs, \u201cModelling access with GIS in urban systems (MAGUS): capturing the experiences of wheelchair users,\u201d vol.35, no.1, pp.34-45, 2003.","DOI":"10.1111\/1475-4762.00108"},{"key":"13","doi-asserted-by":"crossref","unstructured":"[13] H.A. Karimi, L. Zhang, and J.G. Benner, \u201cPersonalized accessibility map (PAM): a novel assisted wayfinding approach for people with disabilities,\u201d dx.doi.org, vol.20, no.2, pp.99-108, April 2014.","DOI":"10.1080\/19475683.2014.904438"},{"key":"14","doi-asserted-by":"crossref","unstructured":"[14] M.M. DiGiovine, R.A. Cooper, M.L. Boninger, B.M. Lawrence, D.P. VanSickle, and A.J. Rentschler, \u201cUser assessment of manual wheelchair ride comfort and ergonomics,\u201d Archives of Physical Medicine and Rehabilitation, vol.81, no.4, pp.490-494, April 2000.","DOI":"10.1053\/mr.2000.3845"},{"key":"15","doi-asserted-by":"crossref","unstructured":"[15] C. Ponsard and V. Snoeck, \u201cObjective accessibility assessment of public infrastructures,\u201d Computers Helping People with Special Needs, vol.4061, pp.314-321, Springer, 2006.","DOI":"10.1007\/11788713_47"},{"key":"16","doi-asserted-by":"crossref","unstructured":"[16] H.A. Karimi, Advanced location-based technologies and services, CRC Press, 2013.","DOI":"10.1201\/b14940"},{"key":"17","doi-asserted-by":"crossref","unstructured":"[17] C. Heipke, \u201cCrowdsourcing geospatial data,\u201d ISPRS Journal of Photogrammetry and Remote Sensing, vol.65, no.6, pp.550-557, 2010.","DOI":"10.1016\/j.isprsjprs.2010.06.005"},{"key":"18","unstructured":"[18] J. Howe, \u201cThe rise of crowdsourcing,\u201d Wired Magazine, vol.14, no.6, pp.1-4, 2006."},{"key":"19","doi-asserted-by":"crossref","unstructured":"[19] C. Cardonha, D. Gallo, P. Avegliano, R. Herrmann, F. Koch, and S. Borger, \u201cA crowdsourcing platform for the construction of accessibility maps,\u201d Proceedings of the 10th International Cross-Disciplinary Conference on Web Accessibility, p.26, ACM, 2013.","DOI":"10.1145\/2461121.2461129"},{"key":"20","unstructured":"[20] T. Miura, K.-I. Yabu, S. Ikematsu, A. Kano, M. Ueda, J. Suzuki, M. Sakajiri, and T. Ifukube, \u201cBarrier-free walk: A social sharing platform of barrier-free information for sensory\/physically-impaired and aged people,\u201d pp.2927-2932, 2012."},{"key":"21","doi-asserted-by":"crossref","unstructured":"[21] K. Shigeno, S. Borger, D. Gallo, R. Herrmann, M. Molinaro, C. Cardonha, F. Koch, and P. Avegliano, \u201cCitizen sensing for collaborative construction of accessibility maps,\u201d Proceedings of the 10th International Cross-Disciplinary Conference on Web Accessibility, W4A '13, New York, NY, USA, pp.24:1-24:2, ACM, 2013.","DOI":"10.1145\/2461121.2461153"},{"key":"22","doi-asserted-by":"crossref","unstructured":"[22] K. Hara, V. Le, and J. Froehlich, \u201cCombining crowdsourcing and google street view to identify street-level accessibility problems,\u201d pp.631-640, 2013.","DOI":"10.1145\/2470654.2470744"},{"key":"23","doi-asserted-by":"crossref","unstructured":"[23] K. Hara, \u201cScalable methods to collect and visualize sidewalk accessibility data for people with mobility impairments,\u201d Proceedings of the adjunct publication of the 27th annual ACM symposium on User interface software and technology, pp.1-4, ACM, 2014.","DOI":"10.1145\/2658779.2661163"},{"key":"24","doi-asserted-by":"crossref","unstructured":"[24] M. Mubashir, L. Shao, and L. Seed, \u201cA survey on fall detection: Principles and approaches,\u201d Neurocomputing, vol.100, pp.144-152, Jan. 2013.","DOI":"10.1016\/j.neucom.2011.09.037"},{"key":"25","unstructured":"[25] X. Yang, A. Dinh, and L. Chen, \u201cImplementation of a wearerable real-time system for physical activity recognition based on naive bayes classifier,\u201d Bioinformatics and Biomedical Technology (ICBBT), 2010 International Conference on, pp.101-105, IEEE, 2010."},{"key":"26","doi-asserted-by":"crossref","unstructured":"[26] D.W. Kang, J.S. Choi, J.W. Lee, S.C. Chung, S.J. Park, and G.R. Tack, \u201cReal-time elderly activity monitoring system based on a tri-axial accelerometer,\u201d dx.doi.org, vol.5, no.4, pp.247-253, June 2010.","DOI":"10.3109\/17483101003718112"},{"key":"27","doi-asserted-by":"crossref","unstructured":"[27] A. Pantelopoulos and N.G. Bourbakis, \u201cA Survey on Wearable Sensor-Based Systems for Health Monitoring and Prognosis,\u201d Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, vol.40, no.1, pp.1-12, Jan. 2010.","DOI":"10.1109\/TSMCC.2009.2032660"},{"key":"28","doi-asserted-by":"crossref","unstructured":"[28] C. Prandi, P. Salomoni, and S. Mirri, \u201cmPASS: Integrating people sensing and crowdsourcing to map urban accessibility,\u201d Proceedings of the IEEE International Conference on Consumer Communications and Networking Conference, pp.591-595, 2014.","DOI":"10.1109\/CCNC.2014.6940491"},{"key":"29","doi-asserted-by":"crossref","unstructured":"[29] Y. Fukushima, H. Uematsu, R. Mitsuhashi, H. Suzuki, and I.E. Yairi, \u201cSensing human movement of mobility and visually impaired people,\u201d The proceedings of the 13th international ACM SIGACCESS conference on Computers and accessibility, pp.279-280, ACM, 2011.","DOI":"10.1145\/2049536.2049606"},{"key":"30","doi-asserted-by":"crossref","unstructured":"[30] O.D. Lara and M.A. Labrador, \u201cA survey on human activity recognition using wearable sensors,\u201d Communications Surveys & Tutorials, IEEE, vol.15, no.3, pp.1192-1209, 2013.","DOI":"10.1109\/SURV.2012.110112.00192"},{"key":"31","doi-asserted-by":"crossref","unstructured":"[31] A. Bulling, U. Blanke, and B. Schiele, \u201cA tutorial on human activity recognition using body-worn inertial sensors,\u201d ACM Computing Surveys (CSUR), vol.46, no.3, p.33, 2014.","DOI":"10.1145\/2499621"},{"key":"32","doi-asserted-by":"crossref","unstructured":"[32] O. Banos, J.-M. Galvez, M. Damas, H. Pomares, and I. Rojas, \u201cWindow size impact in human activity recognition,\u201d Sensors, vol.14, no.4, pp.6474-6499, 2014.","DOI":"10.3390\/s140406474"},{"key":"33","doi-asserted-by":"crossref","unstructured":"[33] D. Figo, P.C. Diniz, D.R. Ferreira, and J.M.P. Cardoso, \u201cPreprocessing techniques for context recognition from accelerometer data,\u201d Personal and Ubiquitous Computing, vol.14, no.7, pp.645-662, 2010.","DOI":"10.1007\/s00779-010-0293-9"},{"key":"34","unstructured":"[34] T. Pl\u00f6tz, N.Y. Hammerla, and P. Olivier, \u201cFeature learning for activity recognition in ubiquitous computing,\u201d IJCAI Proceedings-International Joint Conference on Artificial Intelligence, p.1729, 2011."},{"key":"35","doi-asserted-by":"crossref","unstructured":"[35] N. Kawaguchi, N. Ogawa, Y. Iwasaki, K. Kaji, T. Terada, K. Murao, S. Inoue, Y. Kawahara, Y. Sumi, and N. Nishio, \u201cHasc challenge: gathering large scale human activity corpus for the real-world activity understandings,\u201d Proceedings of the 2nd Augmented Human International Conference, p.27, ACM, 2011.","DOI":"10.1145\/1959826.1959853"},{"key":"36","doi-asserted-by":"crossref","unstructured":"[36] Y. Bengio, A. Courville, and P. Vincent, \u201cRepresentation learning: A review and new perspectives,\u201d Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.35, no.8, pp.1798-1828, 2013.","DOI":"10.1109\/TPAMI.2013.50"},{"key":"37","doi-asserted-by":"crossref","unstructured":"[37] L. Deng, G. Hinton, and B. Kingsbury, \u201cNew types of deep neural network learning for speech recognition and related applications: An overview,\u201d Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, pp.8599-8603, IEEE, 2013.","DOI":"10.1109\/ICASSP.2013.6639344"},{"key":"38","doi-asserted-by":"crossref","unstructured":"[38] A. Henpraserttae, S. Thiemjarus, and S. Marukatat, \u201cAccurate activity recognition using a mobile phone regardless of device orientation and location,\u201d Body Sensor Networks (BSN), 2011 International Conference on, pp.41-46, IEEE, 2011.","DOI":"10.1109\/BSN.2011.8"},{"key":"39","doi-asserted-by":"crossref","unstructured":"[39] J.L.C. Cand\u00e1s, V. Pel\u00e1ez, G. L\u00f3pez, M.\u00c1. Fern\u00e1ndez, E. \u00c1lvarez, and G. Diaz, \u201cAn automatic data mining method to detect abnormal human behaviour using physical activity measurements,\u201d Pervasive and Mobile Computing, vol.15, pp.228-241, 2014.","DOI":"10.1016\/j.pmcj.2014.09.007"}],"container-title":["IEICE Transactions on Information and Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transinf\/E99.D\/4\/E99.D_2015EDP7278\/_pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,9,6]],"date-time":"2019-09-06T00:45:56Z","timestamp":1567730756000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.jstage.jst.go.jp\/article\/transinf\/E99.D\/4\/E99.D_2015EDP7278\/_article"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016]]},"references-count":39,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2016]]}},"URL":"https:\/\/doi.org\/10.1587\/transinf.2015edp7278","relation":{},"ISSN":["0916-8532","1745-1361"],"issn-type":[{"value":"0916-8532","type":"print"},{"value":"1745-1361","type":"electronic"}],"subject":[],"published":{"date-parts":[[2016]]}}}